A263352 Expansion of Product_{k>=1} 1/(1 - x^(2*k+3))^k.
1, 0, 0, 0, 0, 1, 0, 2, 0, 3, 1, 4, 2, 5, 6, 7, 10, 9, 19, 14, 29, 23, 46, 38, 66, 64, 99, 107, 143, 171, 211, 270, 311, 418, 465, 633, 698, 945, 1049, 1399, 1579, 2052, 2364, 2997, 3527, 4366, 5219, 6339, 7686, 9197, 11234, 13321, 16340, 19261, 23622, 27796
Offset: 0
Keywords
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..1000
- Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015
- Eric Weisstein's World of Mathematics, Barnes G-Function.
Programs
-
Maple
with(numtheory): a:= proc(n) option remember; `if`(n=0, 1, add(add(d* `if`(d>1 and d::odd, (d-3)/2, 0), d=divisors(j))*a(n-j), j=1..n)/n) end: seq(a(n), n=0..60); # Alois P. Heinz, Oct 17 2015
-
Mathematica
nmax = 60; CoefficientList[Series[Product[1/(1 - x^(2*k+3))^k, {k, 1, nmax}], {x, 0, nmax}], x]
Comments