cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A035528 Euler transform of A027656(n-1).

Original entry on oeis.org

0, 1, 1, 3, 3, 6, 9, 13, 19, 28, 42, 57, 84, 115, 164, 227, 313, 429, 588, 799, 1079, 1461, 1952, 2617, 3480, 4627, 6111, 8072, 10604, 13905, 18181, 23701, 30828, 39990, 51763, 66822, 86124, 110687, 142039, 181841, 232409, 296401, 377419, 479635, 608558, 770818
Offset: 0

Views

Author

Keywords

Comments

Also the weigh transform of A003602. - John Keith, Nov 17 2021

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[-1 + Product[1/(1 - x^(2*k-1))^k, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 19 2015 *)
    nmax = 100; Flatten[{0, Rest[CoefficientList[Series[E^Sum[1/j*x^j/(1 - x^(2*j))^2, {j, 1, nmax}], {x, 0, nmax}], x]]}] (* Vaclav Kotesovec, Oct 10 2015 *)

Formula

a(n) ~ A^(1/2) * Zeta(3)^(11/72) * exp(-1/24 - Pi^4/(1728*Zeta(3)) + Pi^2 * n^(1/3)/(3*2^(8/3)*Zeta(3)^(1/3)) + 3*Zeta(3)^(1/3) * n^(2/3)/2^(4/3)) / (sqrt(3*Pi) * 2^(71/72) * n^(47/72)), where Zeta(3) = A002117 and A = A074962 is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, Oct 02 2015

A263150 Expansion of Product_{k>=1} 1/(1 - x^(2*k+1))^k.

Original entry on oeis.org

1, 0, 0, 1, 0, 2, 1, 3, 2, 5, 6, 7, 11, 12, 21, 22, 34, 38, 59, 67, 95, 118, 155, 198, 252, 330, 409, 540, 662, 867, 1067, 1382, 1705, 2187, 2705, 3430, 4267, 5348, 6666, 8303, 10352, 12812, 15964, 19681, 24467, 30091, 37282, 45769, 56539, 69296, 85304
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 10 2015

Keywords

Comments

The side effect of this calculation is a formula: Integral_{x=0..infinity} exp(-3*x)/(x*(1-exp(-2*x))^2) - 1/(4*x^3) + 1/(4*x^2) - exp(-x)/(24*x) = log(2)/6 + log(A)/2 - 1/24, where A = A074962 is the Glaisher-Kinkelin constant.

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember; `if`(n=0, 1, add(add(d*
          `if`(irem(d-1, 2)=0, (d-1)/2, 0),
           d=divisors(j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..60);  # after Alois P. Heinz, Oct 17 2015
  • Mathematica
    nmax = 100; CoefficientList[Series[Product[1/(1-x^(2*k+1))^k,{k,1,nmax}],{x,0,nmax}],x]
    nmax = 100; CoefficientList[Series[E^Sum[1/j*x^(3*j)/(1 - x^(2*j))^2, {j, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: exp(Sum_{j>=1} 1/j*x^(3*j)/(1 - x^(2*j))^2).
a(n) ~ sqrt(A) * Zeta(3)^(11/72) * exp(-1/24 - Pi^4/(1728*Zeta(3)) - Pi^2 * n^(1/3) / (3 * 2^(8/3)* Zeta(3)^(1/3)) + 3 * (Zeta(3)/2)^(1/3) * n^(2/3)/2) / (2^(35/72) * sqrt(3*Pi) * n^(47/72)), where Zeta(3) = A002117 and A = A074962 is the Glaisher-Kinkelin constant.

A263395 Expansion of Product_{k>=1} 1/(1 - x^(2*k+5))^k.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 1, 0, 2, 0, 3, 0, 4, 1, 5, 2, 6, 6, 7, 10, 9, 19, 11, 28, 16, 44, 25, 61, 40, 87, 65, 116, 107, 160, 168, 215, 260, 295, 393, 407, 578, 573, 836, 814, 1193, 1167, 1675, 1684, 2335, 2427, 3238, 3501, 4468, 5014, 6161, 7152, 8494, 10121
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 16 2015

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember; local r; `if`(n=0, 1,
           add(add(`if`(irem(d-4, 2, 'r')=1, d*r, 0)
           , d=divisors(j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..60);  # Alois P. Heinz, Oct 17 2015
  • Mathematica
    nmax = 60; CoefficientList[Series[Product[1/(1 - x^(2*k+5))^k, {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 60; CoefficientList[Series[E^Sum[x^(7*k)/(k*(1-x^(2*k))^2), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: exp(Sum_{k>=1} x^(7*k)/(k*(1-x^(2*k))^2)).
a(n) ~ 2^(109/72) * exp(-1/24 - 25*Pi^4/(1728*Zeta(3)) - 5*Pi^2 * n^(1/3) / (12 * 2^(2/3) * Zeta(3)^(1/3)) + 3 * Zeta(3)^(1/3) * n^(2/3) / 2^(4/3)) * sqrt(A) * n^(25/72) / (3*sqrt(3*Pi) * Zeta(3)^(61/72)), where Zeta(3) = A002117 and A = A074962 is the Glaisher-Kinkelin constant.

A263396 Expansion of Product_{k>=1} 1/(1 - x^(2*k+7))^k.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 0, 3, 0, 4, 0, 5, 1, 6, 2, 7, 6, 8, 10, 9, 19, 11, 28, 13, 44, 18, 60, 27, 85, 42, 111, 67, 148, 109, 188, 169, 245, 260, 313, 390, 408, 568, 535, 811, 717, 1139, 974, 1568, 1343, 2134, 1872, 2873, 2621, 3832, 3687, 5088
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 16 2015

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember; local r; `if`(n=0, 1,
           add(add(`if`(irem(d-6, 2, 'r')=1, d*r, 0)
           , d=divisors(j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..65);  # Alois P. Heinz, Oct 17 2015
  • Mathematica
    nmax = 60; CoefficientList[Series[Product[1/(1 - x^(2*k+7))^k, {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 60; CoefficientList[Series[E^Sum[x^(9*k)/(k*(1-x^(2*k))^2), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: exp(Sum_{k>=1} x^(9*k)/(k*(1-x^(2*k))^2)).
a(n) ~ 8 * 2^(1/72) * exp(-1/24 - 49*Pi^4/(1728*Zeta(3)) - 7*Pi^2 * n^(1/3) / (12 * 2^(2/3) * Zeta(3)^(1/3)) + 3 * Zeta(3)^(1/3) * n^(2/3) / 2^(4/3)) * sqrt(A) * n^(97/72) / (45*sqrt(3*Pi) * Zeta(3)^(133/72)), where Zeta(3) = A002117 and A = A074962 is the Glaisher-Kinkelin constant.

A263397 Expansion of Product_{k>=1} 1/(1 - x^(2*k+9))^k.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, 1, 7, 2, 8, 6, 9, 10, 10, 19, 11, 28, 13, 44, 15, 60, 20, 85, 29, 110, 44, 146, 69, 183, 111, 233, 171, 286, 262, 358, 391, 441, 568, 553, 808, 697, 1129, 898, 1543, 1174, 2080, 1563, 2766
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 16 2015

Keywords

Comments

In general, if g.f. = Product_{k>=1} 1/(1-x^(2*k+v))^k and v>0 is odd, then a(n) ~ d2(v) * (2*n)^(v^2/24 - 25/36) * exp(-Pi^4 * v^2 / (1728*Zeta(3)) - Pi^2 * v * n^(1/3) /(3 * 2^(8/3) * Zeta(3)^(1/3)) + 3*Zeta(3)^(1/3) * n^(2/3) / 2^(4/3)) / (sqrt(3*Pi) * Zeta(3)^(v^2/24 - 7/36)), where Zeta(3) = A002117.
d2(v) = exp(Integral_{x=0..infinity} 1/(x*exp((v-2)*x) * (exp(2*x)- 1)^2) - (3*v^2-2)/(24*x*exp(x)) + v/(4*x^2) - 1/(4*x^3) dx).
d2(v) = 2^(v/4 - 1/12) * exp(-Zeta'(-1)/2) / Product_{j=1..(v-1)/2} (2*j-1)!!, where Zeta'(-1) = A084448 and Product_{j=1..(v-1)/2} (2*j-1)!! = A057863((v-1)/2).
d2(v) = 2^(1/12 + v/4 - v^2/8) * exp(1/12) * Pi^(v/4) / (A * G(v/2 + 1)), where A = A074962 is the Glaisher-Kinkelin constant and G is the Barnes G-function.

Crossrefs

Cf. A035528 (v=-1), A263150 (v=1), A263352 (v=3), A263395 (v=5), A263396 (v=7).

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember; local r; `if`(n=0, 1,
           add(add(`if`(irem(d-8, 2, 'r')=1, d*r, 0)
           , d=divisors(j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..65);  # Alois P. Heinz, Oct 17 2015
  • Mathematica
    nmax = 60; CoefficientList[Series[Product[1/(1 - x^(2*k+9))^k, {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 60; CoefficientList[Series[E^Sum[x^(11*k)/(k*(1-x^(2*k))^2), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: exp(Sum_{k>=1} x^(11*k)/(k*(1-x^(2*k))^2)).
a(n) ~ 16 * 2^(61/72) * exp(-1/24 - 3*Pi^4/(64*Zeta(3)) - 3*Pi^2 * n^(1/3) / (2^(8/3) * Zeta(3)^(1/3)) + 3 * Zeta(3)^(1/3) * n^(2/3) / 2^(4/3)) * sqrt(A) * n^(193/72) / (4725*sqrt(3*Pi) * Zeta(3)^(229/72)), where Zeta(3) = A002117 and A = A074962 is the Glaisher-Kinkelin constant.
Showing 1-5 of 5 results.