cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A263150 Expansion of Product_{k>=1} 1/(1 - x^(2*k+1))^k.

Original entry on oeis.org

1, 0, 0, 1, 0, 2, 1, 3, 2, 5, 6, 7, 11, 12, 21, 22, 34, 38, 59, 67, 95, 118, 155, 198, 252, 330, 409, 540, 662, 867, 1067, 1382, 1705, 2187, 2705, 3430, 4267, 5348, 6666, 8303, 10352, 12812, 15964, 19681, 24467, 30091, 37282, 45769, 56539, 69296, 85304
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 10 2015

Keywords

Comments

The side effect of this calculation is a formula: Integral_{x=0..infinity} exp(-3*x)/(x*(1-exp(-2*x))^2) - 1/(4*x^3) + 1/(4*x^2) - exp(-x)/(24*x) = log(2)/6 + log(A)/2 - 1/24, where A = A074962 is the Glaisher-Kinkelin constant.

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember; `if`(n=0, 1, add(add(d*
          `if`(irem(d-1, 2)=0, (d-1)/2, 0),
           d=divisors(j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..60);  # after Alois P. Heinz, Oct 17 2015
  • Mathematica
    nmax = 100; CoefficientList[Series[Product[1/(1-x^(2*k+1))^k,{k,1,nmax}],{x,0,nmax}],x]
    nmax = 100; CoefficientList[Series[E^Sum[1/j*x^(3*j)/(1 - x^(2*j))^2, {j, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: exp(Sum_{j>=1} 1/j*x^(3*j)/(1 - x^(2*j))^2).
a(n) ~ sqrt(A) * Zeta(3)^(11/72) * exp(-1/24 - Pi^4/(1728*Zeta(3)) - Pi^2 * n^(1/3) / (3 * 2^(8/3)* Zeta(3)^(1/3)) + 3 * (Zeta(3)/2)^(1/3) * n^(2/3)/2) / (2^(35/72) * sqrt(3*Pi) * n^(47/72)), where Zeta(3) = A002117 and A = A074962 is the Glaisher-Kinkelin constant.

A263352 Expansion of Product_{k>=1} 1/(1 - x^(2*k+3))^k.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 0, 2, 0, 3, 1, 4, 2, 5, 6, 7, 10, 9, 19, 14, 29, 23, 46, 38, 66, 64, 99, 107, 143, 171, 211, 270, 311, 418, 465, 633, 698, 945, 1049, 1399, 1579, 2052, 2364, 2997, 3527, 4366, 5219, 6339, 7686, 9197, 11234, 13321, 16340, 19261, 23622, 27796
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 16 2015

Keywords

Comments

From Vaclav Kotesovec, Oct 17 2015: (Start)
In general, if g.f. = Product_{k>=1} 1/(1-x^(2*k+v))^k and v>0 is odd, then a(n) ~ d2(v) * (2*n)^(v^2/24 - 25/36) * exp(-Pi^4 * v^2 / (1728*Zeta(3)) - Pi^2 * v * n^(1/3) /(3 * 2^(8/3) * Zeta(3)^(1/3)) + 3*Zeta(3)^(1/3) * n^(2/3) / 2^(4/3)) / (sqrt(3*Pi) * Zeta(3)^(v^2/24 - 7/36)), where Zeta(3) = A002117.
d2(v) = exp(Integral_{x=0..infinity} 1/(x*exp((v-2)*x) * (exp(2*x)- 1)^2) - (3*v^2-2)/(24*x*exp(x)) + v/(4*x^2) - 1/(4*x^3) dx).
d2(v) = 2^(v/4 - 1/12) * exp(-Zeta'(-1)/2) / Product_{j=1..(v-1)/2} (2*j-1)!!, where Zeta'(-1) = A084448 and Product_{j=1..(v-1)/2} (2*j-1)!! = A057863((v-1)/2).
d2(v) = 2^(1/12 + v/4 - v^2/8) * exp(1/12) * Pi^(v/4) / (A * G(v/2 + 1)), where A = A074962 is the Glaisher-Kinkelin constant and G is the Barnes G-function.
(End)

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember; `if`(n=0, 1, add(add(d*
          `if`(d>1 and d::odd, (d-3)/2, 0),
          d=divisors(j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..60);  # Alois P. Heinz, Oct 17 2015
  • Mathematica
    nmax = 60; CoefficientList[Series[Product[1/(1 - x^(2*k+3))^k, {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ 2^(25/72) * sqrt(A) * exp(-1/24 + 3 * 2^(-4/3) * Zeta(3)^(1/3) * n^(2/3) - Pi^4/(192*Zeta(3)) - Pi^2 * n^(1/3)/(2^(8/3) * Zeta(3)^(1/3))) / (sqrt(3*Pi) * Zeta(3)^(13/72) * n^(23/72)), where Zeta(3) = A002117 and A = A074962 is the Glaisher-Kinkelin constant.

A263395 Expansion of Product_{k>=1} 1/(1 - x^(2*k+5))^k.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 1, 0, 2, 0, 3, 0, 4, 1, 5, 2, 6, 6, 7, 10, 9, 19, 11, 28, 16, 44, 25, 61, 40, 87, 65, 116, 107, 160, 168, 215, 260, 295, 393, 407, 578, 573, 836, 814, 1193, 1167, 1675, 1684, 2335, 2427, 3238, 3501, 4468, 5014, 6161, 7152, 8494, 10121
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 16 2015

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember; local r; `if`(n=0, 1,
           add(add(`if`(irem(d-4, 2, 'r')=1, d*r, 0)
           , d=divisors(j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..60);  # Alois P. Heinz, Oct 17 2015
  • Mathematica
    nmax = 60; CoefficientList[Series[Product[1/(1 - x^(2*k+5))^k, {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 60; CoefficientList[Series[E^Sum[x^(7*k)/(k*(1-x^(2*k))^2), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: exp(Sum_{k>=1} x^(7*k)/(k*(1-x^(2*k))^2)).
a(n) ~ 2^(109/72) * exp(-1/24 - 25*Pi^4/(1728*Zeta(3)) - 5*Pi^2 * n^(1/3) / (12 * 2^(2/3) * Zeta(3)^(1/3)) + 3 * Zeta(3)^(1/3) * n^(2/3) / 2^(4/3)) * sqrt(A) * n^(25/72) / (3*sqrt(3*Pi) * Zeta(3)^(61/72)), where Zeta(3) = A002117 and A = A074962 is the Glaisher-Kinkelin constant.

A263396 Expansion of Product_{k>=1} 1/(1 - x^(2*k+7))^k.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 0, 3, 0, 4, 0, 5, 1, 6, 2, 7, 6, 8, 10, 9, 19, 11, 28, 13, 44, 18, 60, 27, 85, 42, 111, 67, 148, 109, 188, 169, 245, 260, 313, 390, 408, 568, 535, 811, 717, 1139, 974, 1568, 1343, 2134, 1872, 2873, 2621, 3832, 3687, 5088
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 16 2015

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember; local r; `if`(n=0, 1,
           add(add(`if`(irem(d-6, 2, 'r')=1, d*r, 0)
           , d=divisors(j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..65);  # Alois P. Heinz, Oct 17 2015
  • Mathematica
    nmax = 60; CoefficientList[Series[Product[1/(1 - x^(2*k+7))^k, {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 60; CoefficientList[Series[E^Sum[x^(9*k)/(k*(1-x^(2*k))^2), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: exp(Sum_{k>=1} x^(9*k)/(k*(1-x^(2*k))^2)).
a(n) ~ 8 * 2^(1/72) * exp(-1/24 - 49*Pi^4/(1728*Zeta(3)) - 7*Pi^2 * n^(1/3) / (12 * 2^(2/3) * Zeta(3)^(1/3)) + 3 * Zeta(3)^(1/3) * n^(2/3) / 2^(4/3)) * sqrt(A) * n^(97/72) / (45*sqrt(3*Pi) * Zeta(3)^(133/72)), where Zeta(3) = A002117 and A = A074962 is the Glaisher-Kinkelin constant.
Showing 1-4 of 4 results.