A263150 Expansion of Product_{k>=1} 1/(1 - x^(2*k+1))^k.
1, 0, 0, 1, 0, 2, 1, 3, 2, 5, 6, 7, 11, 12, 21, 22, 34, 38, 59, 67, 95, 118, 155, 198, 252, 330, 409, 540, 662, 867, 1067, 1382, 1705, 2187, 2705, 3430, 4267, 5348, 6666, 8303, 10352, 12812, 15964, 19681, 24467, 30091, 37282, 45769, 56539, 69296, 85304
Offset: 0
Keywords
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..10000
- Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015
Programs
-
Maple
with(numtheory): a:= proc(n) option remember; `if`(n=0, 1, add(add(d* `if`(irem(d-1, 2)=0, (d-1)/2, 0), d=divisors(j))*a(n-j), j=1..n)/n) end: seq(a(n), n=0..60); # after Alois P. Heinz, Oct 17 2015
-
Mathematica
nmax = 100; CoefficientList[Series[Product[1/(1-x^(2*k+1))^k,{k,1,nmax}],{x,0,nmax}],x] nmax = 100; CoefficientList[Series[E^Sum[1/j*x^(3*j)/(1 - x^(2*j))^2, {j, 1, nmax}], {x, 0, nmax}], x]
Formula
G.f.: exp(Sum_{j>=1} 1/j*x^(3*j)/(1 - x^(2*j))^2).
Comments