cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A263353 Decimal expansion of the generalized hypergeometric function 3F2(1/2,1/2,1/2; 3/2,3/2; x) at x=1/2.

Original entry on oeis.org

1, 0, 3, 2, 6, 3, 1, 9, 5, 5, 7, 4, 4, 0, 7, 1, 4, 7, 2, 6, 7, 7, 0, 9, 3, 5, 3, 3, 9, 8, 1, 5, 8, 5, 8, 9, 4, 7, 0, 7, 3, 0, 2, 8, 2, 0, 4, 1, 2, 2, 0, 7, 6, 6, 4, 8, 5, 4, 0, 0, 9, 8, 1, 0, 5, 0, 0, 2, 3, 3, 8, 7, 3, 4, 6, 3, 0, 7, 0, 2, 0, 7, 5, 0, 4, 4, 8, 7, 5, 0, 6, 4, 3, 4, 5, 4, 9, 3, 3
Offset: 1

Views

Author

R. J. Mathar, Oct 16 2015

Keywords

Examples

			1.032631955744071472677093...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.7.2, p. 55.

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:=RealField(); (Pi(R)*Log(2)/4 + Catalan(R))/Sqrt(2); // G. C. Greubel, Aug 25 2018
  • Maple
    evalf(hypergeom([1/2,1/2,1/2],[3/2,3/2],1/2) );
  • Mathematica
    RealDigits[(Pi*Log[2]/4 + Catalan)/Sqrt[2], 10, 100][[1]] (* G. C. Greubel, Aug 25 2018 *)
  • PARI
    default(realprecision, 100); (Pi*log(2)/4 + Catalan)/sqrt(2) \\ G. C. Greubel, Aug 25 2018
    

Formula

Equals (Pi*log(2)/4+Catalan)/sqrt(2) = (A003881 * A002162 + A006752) * A010503.
Equals Sum_{k>=0} binomial(2*k,k)/(2^(3*k)*(2*k + 1)^2) (see Finch). - Stefano Spezia, Nov 12 2024