A263397 Expansion of Product_{k>=1} 1/(1 - x^(2*k+9))^k.
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, 1, 7, 2, 8, 6, 9, 10, 10, 19, 11, 28, 13, 44, 15, 60, 20, 85, 29, 110, 44, 146, 69, 183, 111, 233, 171, 286, 262, 358, 391, 441, 568, 553, 808, 697, 1129, 898, 1543, 1174, 2080, 1563, 2766
Offset: 0
Keywords
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..5000
- Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015
- Eric Weisstein's World of Mathematics, Barnes G-Function.
Programs
-
Maple
with(numtheory): a:= proc(n) option remember; local r; `if`(n=0, 1, add(add(`if`(irem(d-8, 2, 'r')=1, d*r, 0) , d=divisors(j))*a(n-j), j=1..n)/n) end: seq(a(n), n=0..65); # Alois P. Heinz, Oct 17 2015
-
Mathematica
nmax = 60; CoefficientList[Series[Product[1/(1 - x^(2*k+9))^k, {k, 1, nmax}], {x, 0, nmax}], x] nmax = 60; CoefficientList[Series[E^Sum[x^(11*k)/(k*(1-x^(2*k))^2), {k, 1, nmax}], {x, 0, nmax}], x]
Formula
G.f.: exp(Sum_{k>=1} x^(11*k)/(k*(1-x^(2*k))^2)).
Comments