cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A263397 Expansion of Product_{k>=1} 1/(1 - x^(2*k+9))^k.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, 1, 7, 2, 8, 6, 9, 10, 10, 19, 11, 28, 13, 44, 15, 60, 20, 85, 29, 110, 44, 146, 69, 183, 111, 233, 171, 286, 262, 358, 391, 441, 568, 553, 808, 697, 1129, 898, 1543, 1174, 2080, 1563, 2766
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 16 2015

Keywords

Comments

In general, if g.f. = Product_{k>=1} 1/(1-x^(2*k+v))^k and v>0 is odd, then a(n) ~ d2(v) * (2*n)^(v^2/24 - 25/36) * exp(-Pi^4 * v^2 / (1728*Zeta(3)) - Pi^2 * v * n^(1/3) /(3 * 2^(8/3) * Zeta(3)^(1/3)) + 3*Zeta(3)^(1/3) * n^(2/3) / 2^(4/3)) / (sqrt(3*Pi) * Zeta(3)^(v^2/24 - 7/36)), where Zeta(3) = A002117.
d2(v) = exp(Integral_{x=0..infinity} 1/(x*exp((v-2)*x) * (exp(2*x)- 1)^2) - (3*v^2-2)/(24*x*exp(x)) + v/(4*x^2) - 1/(4*x^3) dx).
d2(v) = 2^(v/4 - 1/12) * exp(-Zeta'(-1)/2) / Product_{j=1..(v-1)/2} (2*j-1)!!, where Zeta'(-1) = A084448 and Product_{j=1..(v-1)/2} (2*j-1)!! = A057863((v-1)/2).
d2(v) = 2^(1/12 + v/4 - v^2/8) * exp(1/12) * Pi^(v/4) / (A * G(v/2 + 1)), where A = A074962 is the Glaisher-Kinkelin constant and G is the Barnes G-function.

Crossrefs

Cf. A035528 (v=-1), A263150 (v=1), A263352 (v=3), A263395 (v=5), A263396 (v=7).

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember; local r; `if`(n=0, 1,
           add(add(`if`(irem(d-8, 2, 'r')=1, d*r, 0)
           , d=divisors(j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..65);  # Alois P. Heinz, Oct 17 2015
  • Mathematica
    nmax = 60; CoefficientList[Series[Product[1/(1 - x^(2*k+9))^k, {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 60; CoefficientList[Series[E^Sum[x^(11*k)/(k*(1-x^(2*k))^2), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: exp(Sum_{k>=1} x^(11*k)/(k*(1-x^(2*k))^2)).
a(n) ~ 16 * 2^(61/72) * exp(-1/24 - 3*Pi^4/(64*Zeta(3)) - 3*Pi^2 * n^(1/3) / (2^(8/3) * Zeta(3)^(1/3)) + 3 * Zeta(3)^(1/3) * n^(2/3) / 2^(4/3)) * sqrt(A) * n^(193/72) / (4725*sqrt(3*Pi) * Zeta(3)^(229/72)), where Zeta(3) = A002117 and A = A074962 is the Glaisher-Kinkelin constant.