A263432 Number of partitions of n into divisors of n with at most one 1.
1, 1, 1, 2, 1, 4, 1, 4, 2, 4, 1, 17, 1, 4, 4, 10, 1, 24, 1, 24, 4, 4, 1, 126, 2, 4, 5, 30, 1, 171, 1, 36, 4, 4, 4, 490, 1, 4, 4, 251, 1, 290, 1, 43, 42, 4, 1, 1822, 2, 50, 4, 50, 1, 462, 4, 421, 4, 4, 1, 13284, 1, 4, 49, 202, 4, 616, 1, 63, 4, 581
Offset: 1
Examples
a(15) = 4 because we have: [15], [5,5,5], [5,3,3,3,1], [3,3,3,3,3].
References
- D. S. Dummit and R. M. Foote, Abstract Algebra, Wiley, 3rd edition 2003, page 124.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
Programs
-
Maple
with(numtheory): a:= proc(n) local b, l; l:= sort([(divisors(n) minus {1})[]]): b:= proc(m, i) option remember; `if`(m=0, 1, `if`(i<1, `if`(m=1, 1, 0), b(m, i-1)+`if`(l[i]>m, 0, b(m-l[i], i)))) end; forget(b): b(n, nops(l)) end: seq(a(n), n=1..100); # Alois P. Heinz, Oct 18 2015
-
Mathematica
Table[d = Drop[Divisors[n], 1];Coefficient[Series[(1 + x)/Product[1 - x^d[[i]], {i, Length[d]}], {x, 0, n}], x,n], {n, 70}]
Formula
a(n) is the coefficient of x^n in the expansion of (1 + x)/Product_{d>1,d divides n} (1 - x^d).
Comments