cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A263479 Total number of n-digit positive integers with multiplicative digital root value 5.

Original entry on oeis.org

1, 6, 33, 132, 435, 1466, 5341, 18656, 58029, 159430, 392601, 882036, 1836159, 3586506, 6638885, 11738656, 19952441, 32768742, 52220113, 81029700, 122785131, 182142906, 265066605, 379102400, 533695525, 740551526, 1014046281, 1371688948, 1834642167, 2428304010
Offset: 1

Views

Author

Martin Renner, Oct 19 2015

Keywords

Comments

First differences of A263473.

Crossrefs

Programs

  • Mathematica
    Last /@ Tally@ IntegerLength@ Select[Range@ 1000000, FixedPoint[Times @@ IntegerDigits@ # &, #] == 5 &] (* Michael De Vlieger, Oct 21 2015 *)
  • PARI
    t(k) = {while(k>9, k=prod(i=1, #k=digits(k), k[i])); k}
    a(n) = sum(i=10^(n-1), 10^n - 1, if(t(i) == 5, 1, 0)); \\ Altug Alkan, Oct 19 2015

Formula

A263476(n) + A000012(n) + A263477(n) + A000027(n) + A263478(n) + a(n) + A263480(n) + A000027(n) + A263481(n) + A000217(n) = A052268(n).
a(n) = (1/720)*(3*n^8 + 6*n^7 - 664*n^6 + 6270*n^5 - 25783*n^4 + 55164*n^3 - 57796*n^2 + 23520*n). - Sergio Pimentel, Mar 27 2024
From Chai Wah Wu, Apr 17 2024: (Start)
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9) for n > 9.
G.f.: x*(235*x^7 - 205*x^6 - 161*x^5 - 57*x^4 + 33*x^3 - 15*x^2 + 3*x - 1)/(x - 1)^9. (End)

Extensions

a(9)-a(30) from Hiroaki Yamanouchi, Oct 25 2015

A263470 Total number of positive integers < 10^n with multiplicative digital root value 0.

Original entry on oeis.org

0, 24, 476, 6739, 82401, 902608, 9394517, 96122290, 975700392, 9854082822, 99180099587, 995679223590, 9977627937023, 99879659224379, 999321444658475, 9996118748668338, 99978099721506172, 999879067589400315, 9999346524827012003, 99996542810942397874
Offset: 1

Views

Author

Martin Renner, Oct 19 2015

Keywords

Comments

Partial sums of A263476. - Michel Marcus, Oct 22 2015

Crossrefs

Programs

  • Mathematica
    Length@ Select[Range[10^# - 1], FixedPoint[Times @@ IntegerDigits@ # &, #] == 0 &] & /@ Range@ 6 (* Michael De Vlieger, Oct 19 2015 *)
  • PARI
    t(k) = {while(k>9, k=prod(i=1, #k=digits(k), k[i])); k}
    a(n) = sum(i=1, 10^n - 1, if(t(i) == 0, 1, 0)); \\ Altug Alkan, Oct 19 2015

Formula

a(n) + A000027(n) + A263471(n) + A000217(n) + A263472(n) + A263473(n) + A263474(n) + A000217(n) + A263475(n) + A000292(n) = A002283(n).

Extensions

a(9)-a(20) from Hiroaki Yamanouchi, Oct 25 2015

A263477 Total number of n-digit positive integers with multiplicative digital root value 2.

Original entry on oeis.org

1, 8, 68, 466, 2670, 13460, 69420, 417722, 3025242, 21873040, 136901413, 722201372, 3271729383, 13114173697, 48104723380, 167526488628, 574289772576, 1988721563904, 7000834741144, 24759698208450, 86342520209963, 292206955736762, 950480594161453
Offset: 1

Views

Author

Martin Renner, Oct 19 2015

Keywords

Comments

First differences of A263471.

Crossrefs

Programs

  • Mathematica
    Last /@ Tally@ IntegerLength@ Select[Range@ 1000000, FixedPoint[Times @@ IntegerDigits@ # &, #] == 2 &] (* Michael De Vlieger, Oct 21 2015 *)
  • PARI
    t(k) = {while(k>9, k=prod(i=1, #k=digits(k), k[i])); k}
    a(n) = sum(i=10^(n-1), 10^n - 1, if(t(i) == 2, 1, 0)); \\ Altug Alkan, Oct 19 2015

Formula

A263476(n) + A000012(n) + a(n) + A000027(n) + A263478(n) + A263479(n) + A263480(n) + A000027(n) + A263481(n) + A000217(n) = A052268(n).

Extensions

a(9)-a(23) from Hiroaki Yamanouchi, Oct 25 2015

A263478 Total number of n-digit positive integers with multiplicative digital root value 4.

Original entry on oeis.org

1, 9, 55, 214, 615, 1451, 3829, 60180, 939045, 8732485, 56961531, 289887214, 1229099287, 4756606869, 24218431805, 233925901576, 2661527233449, 25685325408201, 203451565638511, 1356903584035110, 7832822232934951, 40022453239462639, 184228949831881593
Offset: 1

Views

Author

Martin Renner, Oct 19 2015

Keywords

Comments

First differences of A263472.

Crossrefs

Programs

  • Mathematica
    Last /@ Tally@ IntegerLength@ Select[Range@ 1000000, FixedPoint[Times @@ IntegerDigits@ # &, #] == 4 &] (* Michael De Vlieger, Oct 21 2015 *)
  • PARI
    t(k) = {while(k>9, k=prod(i=1, #k=digits(k), k[i])); k}
    a(n) = sum(i=10^(n-1), 10^n - 1, if(t(i) == 4, 1, 0)); \\ Altug Alkan, Oct 19 2015

Formula

A263476(n) + A000012(n) + A263477(n) + A000027(n) + a(n) + A263479(n) + A263480(n) + A000027(n) + A263481(n) + A000217(n) = A052268(n).

Extensions

a(9)-a(23) from Hiroaki Yamanouchi, Oct 25 2015

A263480 Total number of n-digit positive integers with multiplicative digital root value 6.

Original entry on oeis.org

1, 13, 141, 1017, 5671, 36695, 274919, 1905346, 11961897, 70484777, 393138130, 2099243511, 11182203514, 61491912211, 342906589613, 1849155959180, 9348828582989, 44293571012946, 201612389814511, 924729895792089, 4608967720196409, 26924559367277143
Offset: 1

Views

Author

Martin Renner, Oct 19 2015

Keywords

Comments

First differences of A263474.

Crossrefs

Programs

  • Mathematica
    Last /@ Tally@ IntegerLength@ Select[Range@ 1000000, FixedPoint[Times @@ IntegerDigits@ # &, #] == 6 &] (* Michael De Vlieger, Oct 21 2015 *)
  • PARI
    t(k) = {while(k>9, k=prod(i=1, #k=digits(k), k[i])); k}
    a(n) = sum(i=10^(n-1), 10^n - 1, if(t(i) == 6, 1, 0)); \\ Altug Alkan, Oct 19 2015

Formula

A263476(n) + A000012(n) + A263477(n) + A000027(n) + A263478(n) + A263479(n) + a(n) + A000027(n) + A263481(n) + A000217(n) = A052268(n).

Extensions

a(9)-a(22) from Hiroaki Yamanouchi, Oct 25 2015

A263481 Total number of n-digit positive integers with multiplicative digital root value 8.

Original entry on oeis.org

1, 22, 138, 889, 4921, 26687, 154539, 870270, 4437621, 20367762, 86589471, 388661761, 2366418106, 18602433227, 142978182070, 952075901928, 5434361620523, 27064481351856, 120477919973804, 497320625548529, 2051776298637086, 9590295679377844, 54933121828772931
Offset: 1

Views

Author

Martin Renner, Oct 19 2015

Keywords

Comments

First differences of A263475.

Crossrefs

Programs

  • Mathematica
    Last /@ Tally@ IntegerLength@ Select[Range@ 1000000, FixedPoint[Times @@ IntegerDigits@ # &, #] == 8 &] (* Michael De Vlieger, Oct 21 2015 *)
  • PARI
    t(k) = {while(k>9, k=prod(i=1, #k=digits(k), k[i])); k}
    a(n) = sum(i=10^(n-1), 10^n - 1, if(t(i) == 8, 1, 0)); \\ Altug Alkan, Oct 19 2015

Formula

A263476(n) + A000012(n) + A263477(n) + A000027(n) + A263478(n) + A263479(n) + A263480(n) + A000027(n) + a(n) + A000217(n) = A052268(n).

Extensions

a(9)-a(23) from Hiroaki Yamanouchi, Oct 25 2015
Showing 1-6 of 6 results.