cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A263537 Integers k such that A098531(k) is divisible by A000071(k+2).

Original entry on oeis.org

1, 2, 13, 25, 31, 43, 55, 61, 73, 85, 91, 103, 115, 121, 133, 145, 151, 163, 175, 181, 193, 205, 211, 223, 235, 241, 253, 265, 271, 283, 295, 301, 313, 325, 331, 343, 355, 361, 373, 385, 391, 403, 415, 421, 433, 445, 451, 463, 475, 481, 493, 505, 511, 523, 535, 541, 553
Offset: 1

Views

Author

Altug Alkan, Oct 20 2015

Keywords

Comments

Sequence is interesting because of the values of a(n) - a(n-1) that are 12 or 6 for n > 3.
a(2) = 2 is the only even term.

Examples

			a(1) = 1 because 1^5 mod 1 = 0.
a(2) = 2 because (1^5 + 1^5) mod (1 + 1) = 0.
		

Crossrefs

Programs

  • Magma
    I:=[1,2,13,25,31,43]; [n le 6 select I[n] else Self(n-1)+Self(n-3)-Self(n-4): n in [1..60]]; // Vincenzo Librandi, Nov 20 2015
  • Mathematica
    lim = 560; s = Accumulate[Fibonacci[Range@lim]^5]; t = Fibonacci@ Range[2 lim] - 1; Select[Range@ lim, Divisible[s[[#]], t[[# + 2]]] &] (* Michael De Vlieger, Nov 19 2015, after Harvey P. Dale at A098531 and A000071 *)
  • PARI
    for(n=1, 1e3, if(sum(k=1, n, fibonacci(k)^5) % sum(k=1, n, fibonacci(k)) == 0, print1(n", ")));
    
  • PARI
    Vec(x*(x^5+5*x^4+11*x^3+11*x^2+x+1)/((x-1)^2*(x^2+x+1)) + O(x^100)) \\ Colin Barker, Oct 20 2015
    

Formula

From Colin Barker, Oct 20 2015: (Start)
a(n) = a(n-1)+a(n-3)-a(n-4) for n>6.
G.f.: x*(x^5+5*x^4+11*x^3+11*x^2+x+1) / ((x-1)^2*(x^2+x+1)).
(End)