A263561 Odd numbers n such that for every k >= 1, n*2^k - 1 has a divisor in the set {3, 5, 13, 17, 97, 241, 257}.
42270067, 97579567, 340716433, 721933559, 890948323, 1726122269, 1865978047, 1889699677, 2362339121, 3185721853, 3637126963, 4668508603, 5064217117, 5569622789, 7480754459, 7701804269, 8594194301, 9005098303, 9180863669, 9939496717, 9979211051
Offset: 1
Keywords
Links
- Arkadiusz Wesolowski, Table of n, a(n) for n = 1..96
- Chris Caldwell, The Prime Glossary, Riesel number
- Carlos Rivera, Problem 29 and Problem 58
- Index entries for linear recurrences with constant coefficients, signature (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1).
Formula
a(n) = a(n-96) + 39832304070 for n > 96.
Comments