cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A029989 Squares which are palindromes in base 5.

Original entry on oeis.org

0, 1, 4, 36, 676, 961, 4356, 15876, 24336, 391876, 423801, 571536, 646416, 9771876, 10732176, 14107536, 81974916, 244171876, 248094001, 264908176, 339812356, 351787536, 1061326084, 1167042244, 2181263616, 6103671876
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    pal5Q[n_]:=Module[{idn5=IntegerDigits[n,5]},idn5==Reverse[idn5]]; Select[ Range[0,80000]^2,pal5Q] (* Harvey P. Dale, May 05 2012 *)

A029988 Numbers k such that k^2 is palindromic in base 5.

Original entry on oeis.org

0, 1, 2, 6, 26, 31, 66, 126, 156, 626, 651, 756, 804, 3126, 3276, 3756, 9054, 15626, 15751, 16276, 18434, 18756, 32578, 34162, 46704, 78126, 78876, 81276, 93756, 390626, 391251, 393876, 406276, 468756, 487981, 1166454, 1953126, 1956876
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    pal5Q[n_]:=Module[{idn5=IntegerDigits[n^2,5]},idn5==Reverse[idn5]]; Select[ Range[ 0,2*10^6],pal5Q] (* Harvey P. Dale, Feb 02 2023 *)

A263611 Base 5 numbers whose square is a palindrome in base 5.

Original entry on oeis.org

0, 1, 2, 11, 101, 111, 231, 1001, 1111, 10001, 10101, 11011, 11204, 100001, 101101, 110011, 242204, 1000001, 1001001, 1010101, 1042214, 1100011, 2020303, 2043122, 2443304, 10000001, 10011001, 10100101, 11000011, 100000001, 100010001, 100101001, 101000101, 110000011, 111103411
Offset: 1

Views

Author

N. J. A. Sloane, Oct 23 2015

Keywords

Comments

A029988 expressed in base 5.

Crossrefs

Programs

  • Mathematica
    With[{b = 5}, FromDigits@ IntegerDigits[#, b] & /@ Select[Range[b^9], PalindromeQ[IntegerDigits[#^2, b]] &]] (* Michael De Vlieger, Aug 15 2022 *)

Formula

a(n) = A007091(A029988(n)).

Extensions

Name corrected by Charles R Greathouse IV, Aug 15 2022
Showing 1-3 of 3 results.