A263616 Number of n-digit numbers whose square is a palindrome.
4, 3, 8, 5, 11, 6, 19, 14, 25, 18, 49, 31, 71, 46, 105, 71, 154, 101, 209, 132, 292, 182, 384, 236, 497, 302, 636, 383, 799, 475, 981, 578, 1201, 701
Offset: 1
Examples
a(2) = 3 because there are three 2-digit numbers with palindromic squares: 11^2 = 121, 22^2 = 484, 26^2 = 676.
Links
- G. J. Simmons, Palindromic powers, J. Rec. Math., 3 (No. 2, 1970), 93-98. [Annotated scanned copy] See page 95.
Programs
-
Mathematica
Join[{4},Table[Total[Table[If[PalindromeQ[n^2],1,0],{n,10^x,10^(x+1)-1}]],{x,9}]] (* Harvey P. Dale, Apr 09 2019 *)
-
Python
from itertools import product def pal(n): s = str(n); return s == s[::-1] def a(n): return int(n==1) + sum(pal(i**2) for i in range(10**(n-1), 10**n)) print([a(n) for n in range(1, 8)]) # Michael S. Branicky, Apr 03 2021
Extensions
a(9)-a(10) from Chai Wah Wu, Oct 25 2015
a(11) from Michael S. Branicky, Apr 03 2021
a(12)-a(22) (using A002778) from Chai Wah Wu, Sep 16 2021
a(23)-a(34) from A002778 added by Max Alekseyev, Apr 08 2025
Comments