A263623 a(1)=1; thereafter, a(n) = smallest k such that the decimal concatenation [a(n-2)+1 a(n-2)+2, ... a(n-1)] divides the decimal concatenation [a(n-1)+1 a(n-1)+2 ... k].
1, 2, 4, 8, 36
Offset: 1
Examples
n=3: a(3) = 4 because k=4 is the smallest number such that 2 divides the concatenation 345...k. n=4: a(4) = 8 because k=8 is the smallest number such that 34 divides the concatenation 567...k. See A002782 for the relevant concatenations.
Comments