A263647 Numbers k such that 2^k-1 and 3^k-1 are coprime.
1, 2, 3, 5, 7, 9, 13, 14, 15, 17, 19, 21, 25, 26, 27, 29, 31, 34, 37, 38, 39, 41, 45, 47, 49, 51, 53, 57, 59, 61, 62, 63, 65, 67, 71, 73, 74, 79, 81, 85, 87, 89, 91, 93, 94, 97, 98, 101, 103, 107, 109, 111, 113, 118, 122, 123, 125, 127, 133, 134, 135, 137, 139, 141, 142, 145, 147, 149, 151, 153, 157, 158, 159, 163, 167, 169, 171
Offset: 1
Examples
gcd(2^1-1, 3^1-1) = gcd(1,2) = 1, so a(1) = 1. gcd(2^2-1, 3^2-1) = gcd(3,8) = 1, so a(2) = 2. gcd(2^4-1, 3^4-1) = gcd(15,80) = 5, so 4 is not in the sequence.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Nir Ailon, Zéev Rudnick, Torsion points on curves and common divisors of a^k - 1 and b^k - 1, Acta Arith. 113 (2004), 31-38. Also arXiv:math/0202102 [math.NT], 2002.
- Thomas Bloom, Problem 820, Erdős Problems.
Programs
-
Magma
[n: n in [1..200] | Gcd(2^n-1, 3^n-1) eq 1]; // Vincenzo Librandi, May 01 2016
-
Maple
select(n -> igcd(2^n-1,3^n-1)=1, [$1..1000]);
-
Mathematica
Select[Range[200], GCD[2^# - 1, 3^# - 1] == 1 &] (* Vincenzo Librandi, May 01 2016 *)
Comments