cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A263655 Table T(m, n) of number of circular binary strings with m ones and n zeros without zigzags, read by antidiagonals (see reference for precise definition).

Original entry on oeis.org

0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 4, 0, 1, 1, 0, 5, 5, 0, 1, 1, 0, 6, 6, 6, 0, 1, 1, 0, 7, 7, 7, 7, 0, 1, 1, 0, 8, 8, 12, 8, 8, 0, 1, 1, 0, 9, 9, 18, 18, 9, 9, 0, 1, 1, 0, 10, 10, 25, 30, 25, 10, 10, 0, 1, 1, 0, 11, 11, 33, 44, 44, 33, 11, 11, 0, 1
Offset: 0

Views

Author

Felix Fröhlich, Oct 23 2015

Keywords

Comments

See page 5, figure 1 in the reference.
A zigzag is a substring which is either 010 or 101.

Examples

			Table starts:
0 1  1  1  1   1   1   1   1    1    1    1    1 ...
1 0  0  0  0   0   0   0   0    0    0    0    0 ...
1 0  4  5  6   7   8   9  10   11   12   13   14 ...
1 0  5  6  7   8   9  10  11   12   13   14   15 ...
1 0  6  7 12  18  25  33  42   52   63   75   88 ...
1 0  7  8 18  30  44  60  78   98  120  144  170 ...
1 0  8  9 25  44  70 104 147  200  264  340  429 ...
1 0  9 10 33  60 104 168 255  368  510  684  893 ...
1 0 10 11 42  78 147 255 412  629  918 1292 1765 ...
1 0 11 12 52  98 200 368 629 1014 1558 2300 3283 ...
1 0 12 13 63 120 264 510 918 1558 2514 3885 5786 ...
		

Crossrefs

Main diagonal is A263656. Antidiagonal sums are A007039.

Programs

  • Mathematica
    max = 11;
    U[r_, k_] := Binomial[r - k + 2*Floor[k/3], Floor[k/3]];
    V[r_, k_] := Binomial[r - Ceiling[k/2] - 1, Floor[k/2]];
    T[0, 0] = T[1, 1] = 0;
    T[0, ] = T[, 0] = 1;
    T[n_ /; n >= 2, m_] /; m <= n := T[n, m] = Switch[m, 1, 0, 2, n + 2, 3, n + 3, _, Sum[ U[m, k]*U[n, k] - 2*V[m, k]*V[n, k]*(-1)^k, {k, 0, max-3}]];
    T[n_, m_] /; m > n := T[m, n];
    Table[T[n - k, k], {n, 0, max}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 01 2018, after Andrew Howroyd *)

Formula

From Andrew Howroyd, Feb 26 2017: (Start)
T(n,m) = Sum_{k>=0} U(m,k)*U(n,k) - 2*V(m,k)*V(n,k)*(-1)^k
where U(r,k)=binomial(r-k+2*floor(k/3), floor(k/3)), V(r,k)=binomial(r-ceiling(k/2)-1, floor(k/2)).
T(n,0)=1 for n>=1, T(n,1)=0 for n>=1, T(n,2)=n+2 for n>=2, T(n,3)=n+3 for n>=2.
T(n,4)=(n-1)*(n+4)/2 for n>=3, T(n,5)=(n-2)*(n+5) for n>=3. (End)

Extensions

a(66)-a(77) from Andrew Howroyd, Feb 26 2017