A263656 Number of length-2n central circular binary strings without zigzags (see reference for precise definition).
0, 0, 4, 6, 12, 30, 70, 168, 412, 1014, 2514, 6270, 15702, 39468, 99516, 251586, 637500, 1618638, 4117102, 10488684, 26758762, 68354250, 174810354, 447533586, 1146836662, 2941443180, 7550434480, 19395863358, 49859516292, 128252962434, 330101861850
Offset: 0
Keywords
Examples
For n=3 the 6 strings are 000111, 001110, 011100, 111000, 110001, 100011.
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..100
- E. Munarini and N. Z. Salvi, Circular Binary Strings without Zigzags, Integers: Electronic Journal of Combinatorial Number Theory 3 (2003), #A19.
Programs
-
Mathematica
a[n_ /; n < 6] := {0, 0, 4, 6, 12, 30}[[n + 1]]; a[n_] := a[n] = (-(3*(n - 6)*a[n - 6]) + (7*n - 37)*a[n - 5] - 6*a[n - 4] + (7*n - 27)*a[n - 3] - 4*(n - 4)*a[n - 2] + 3*(n - 1)*a[n - 1])/n; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Oct 08 2017, after Andrew Howroyd *)
Formula
a(n) = (1/n)*(3*(n-1)*a(n-1) - 4*(n-4)*a(n-2) + (7*n-27)*a(n-3) - 6*a(n-4) + (7*n-37)*a(n-5) - 3*(n-6)*a(n-6)) for n >= 6. - Andrew Howroyd, Feb 26 2017
Extensions
corrected a(1) and a(17)-a(30) from Andrew Howroyd, Feb 26 2017
Comments