A263658 Number of (0, 1)-necklaces with n zeros and n ones without zigzags (see reference for precise definition).
0, 0, 1, 1, 2, 3, 7, 12, 27, 57, 128, 285, 659, 1518, 3561, 8389, 19936, 47607, 114397, 276018, 669035, 1627491, 3973106, 9728991, 23892779, 58828866, 145201423, 359182693, 890350290, 2211257973, 5501701981, 13711368630, 34225162345, 85555609119, 214166692430, 536810116905
Offset: 0
Keywords
Examples
For n=2 the necklace is 0011. For n=3 the necklace is 000111. For n=4 the necklaces are 00001111, 00110011. For n=5 the necklaces are 0000011111, 0001110011, 0001100111.
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..100
- E. Munarini and N. Z. Salvi, Circular Binary Strings without Zigzags, Integers: Electronic Journal of Combinatorial Number Theory 3 (2003), #A19.
Programs
-
Mathematica
(* b = A263656 *) b[n_ /; n < 6] := {0, 0, 4, 6, 12, 30}[[n + 1]]; b[n_] := b[n] = (1/n)*(3*(n - 1)*b[n - 1] - 4*(n - 4)*b[n - 2] + (7*n - 27)*b[n - 3] - 6*b[n - 4] + (7*n - 37)*b[n - 5] - 3*(n - 6)*b[n - 6]); a[0] = 0; a[n_] := (1/n)*DivisorSum[n, EulerPhi[n/#] * b[#]/2&]; Array[a, 36, 0] (* Jean-François Alcover, Sep 11 2017, after Andrew Howroyd *)
Formula
a(n) = (1/n) * Sum_{d | n} totient(n/d) * A263656(d) / 2. - Andrew Howroyd, Feb 26 2017
Extensions
Offset corrected and a(21)-a(35) from Andrew Howroyd, Feb 26 2017
Comments