A263659 Number of (0, 1)-necklaces of length n without zigzags (see reference for precise definition).
0, 2, 2, 2, 3, 4, 5, 6, 8, 10, 15, 20, 31, 42, 64, 94, 143, 212, 329, 494, 766, 1170, 1811, 2788, 4341, 6714, 10462, 16274, 25415, 39652, 62075, 97110, 152288, 238838, 375167, 589528, 927555, 1459962, 2300348, 3626242, 5721045
Offset: 0
Keywords
Examples
For n=5 the necklaces are 00000, 11111, 00011, 00111 so a(5)=4.
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..200
- E. Munarini and N. Z. Salvi, Circular Binary Strings without Zigzags, Integers: Electronic Journal of Combinatorial Number Theory 3 (2003), #A19.
Programs
-
Mathematica
(* b = A007039 *) b[n_ /; n<4] = 2; b[4] = 6; b[n_] := b[n] = 2*b[n-1] - b[n-2] + b[n-4]; a[0] = 0; a[n_] := (1/n) * DivisorSum[n, EulerPhi[n/#] * b[#]&]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Oct 08 2017, after Andrew Howroyd *)
Formula
a(n) = (1/n) * Sum_{d | n} totient(n/d) * A007039(d). - Andrew Howroyd, Feb 26 2017
Extensions
a(25)-a(40) from Andrew Howroyd, Feb 26 2017
Comments