cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A263673 a(n) = lcm{1,2,...,n} / binomial(n,floor(n/2)).

Original entry on oeis.org

1, 1, 1, 2, 2, 6, 3, 12, 12, 20, 10, 60, 30, 210, 105, 56, 56, 504, 252, 2520, 1260, 660, 330, 3960, 1980, 5148, 2574, 4004, 2002, 30030, 15015, 240240, 240240, 123760, 61880, 31824, 15912, 302328, 151164, 77520, 38760, 813960, 406980, 8953560, 4476780, 2288132, 1144066, 27457584, 13728792, 49031400
Offset: 0

Views

Author

Max Alekseyev, Oct 23 2015

Keywords

Comments

From Robert Israel, Oct 23 2015: (Start)
If n = 2^k, a(n) = a(n-1).
If n = p^k where p is an odd prime and k >= 1, 2*n*a(n) = p*(n+1)*a(n-1).
If n is even and not a prime power, 2*a(n) = a(n-1).
If n is odd and not a prime power, 2*n*a(n) = (n+1)*a(n-1). (End)

Crossrefs

Programs

  • Maple
    a := n -> lcm(seq(k,k=1..n))/binomial(n,iquo(n,2)):
    seq(a(n), n=0..49); # Peter Luschny, Oct 23 2015
  • Mathematica
    Join[{1}, Table[LCM @@ Range[n]/Binomial[n, Floor[n/2]], {n, 1, 50}]] (* or *) Table[Product[Cyclotomic[k, 1], {k, 2, n}]/Binomial[n, Floor[n/2]], {n, 0, 50}] (* G. C. Greubel, Apr 17 2017 *)
  • PARI
    A263673(n) = lcm(vector(n,i,i)) / binomial(n,n\2);

Formula

a(n) = A003418(n) / A001405(n).
a(n) = A048619(n-1) * A110654(n).
a(2*n) = A068550(n) = A099996(n) / A000984(n).
a(n) = A180000(n)*A152271(n). - Peter Luschny, Oct 23 2015
a(n) = (e/2)^(n + o(1)). - Charles R Greathouse IV, Oct 23 2015