cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A263675 Numbers that are both averages of consecutive primes and nontrivial prime powers.

Original entry on oeis.org

4, 9, 64, 81, 625, 1681, 4096, 822649, 1324801, 2411809, 2588881, 2778889, 3243601, 3636649, 3736489, 5527201, 6115729, 6405961, 8720209, 9006001, 12752041, 16056049, 16589329, 18088009, 21743569, 25230529, 29343889, 34586161, 37736449, 39150049
Offset: 1

Views

Author

Antonio Roldán, Oct 23 2015

Keywords

Comments

Intersection of A024675 and A025475.
Lesser of consecutive primes is in the sequence A084289.

Examples

			625 is in this sequence because 625 = 5^4, nontrivial prime power, and 625 = (619+631)/2, with 619 and 631 consecutive primes.
		

Crossrefs

Programs

  • Maple
    N:= 10^10: # to get all terms <= N
    Primes:= select(isprime, [2,seq(i,i=3..isqrt(N),2)]):
    S:= select(t -> t - prevprime(t) = nextprime(t)-t, {seq(seq(p^j, j=2..floor(log[p](N))),p=Primes)}):
    sort(convert(S,list)); # Robert Israel, Dec 27 2015
  • Mathematica
    (* version >= 6 *)(#/2 + NextPrime[#]/2) & /@
    Select[Prime[Range[5000000]], PrimePowerQ[#/2 + NextPrime[#]/2] &]
    (* Wouter Meeussen, Oct 26 2015 *)
  • PARI
    {for(i=1,10^8,if(isprimepower(i)>1&&i==(precprime(i-1)+nextprime(i+1))/2,print1(i,", ")))}