cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A263694 Expansion of (1 + x + x^2 + x^3 + 4*x^4 - x^5 - x^6 - x^7 + 3*x^8)/((1 - x)^2*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7)).

Original entry on oeis.org

1, 2, 3, 4, 8, 7, 6, 5, 9, 10, 11, 12, 16, 15, 14, 13, 17, 18, 19, 20, 24, 23, 22, 21, 25, 26, 27, 28, 32, 31, 30, 29, 33, 34, 35, 36, 40, 39, 38, 37, 41, 42, 43, 44, 48, 47, 46, 45, 49, 50, 51, 52, 56, 55, 54, 53, 57, 58, 59, 60, 64, 63, 62, 61, 65, 66, 67, 68, 72, 71, 70, 69, 73, 74, 75
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 17 2016

Keywords

Comments

In each group of 8 consecutive numbers, swap 5 and 8 terms, 6 and 7 terms.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1 + x + x^2 + x^3 + 4 x^4 - x^5 - x^6 - x^7 + 3 x^8)/((1 - x)^2 (1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7)), {x, 0, 75}], x]
    LinearRecurrence[{1, 0, 0, 0, 0, 0, 0, 1, -1}, {1, 2, 3, 4, 8, 7, 6, 5, 9}, 75]
  • PARI
    x='x+O('x^99); Vec((1+x+x^2+x^3+4*x^4-x^5-x^6-x^7+3*x^8)/((1-x)^2*(1+x+x^2+x^3 +x^4+x^5+x^6+x^7))) \\ Altug Alkan, Apr 18 2016

Formula

G.f.: (1 + x + x^2 + x^3 + 4*x^4 - x^5 - x^6 - x^7 + 3*x^8)/((1 - x)^2*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7)).
a(n) = a(n-1) + a(n-8) - a(n-9).
a(n) = 1 + n + 3*floor(n/4) - 2*floor((n+1)/8) - 2*floor((n+2)/8) - 2*floor((n+3)/8). - Vaclav Kotesovec, Apr 19 2016