A263695 Even numbers such that the sum of the even divisors and the sum of the odd divisors are a square or a cube.
6, 14, 434, 636, 748, 762, 4620, 5964, 6204, 6324, 6580, 6820, 7084, 7660, 8404, 8636, 8804, 9010, 9710, 11342, 11920, 23622, 29820, 31020, 31620, 32844, 35420, 36204, 38964, 39804, 40044, 42020, 43180, 44020, 45724, 46004, 47564, 48484, 49146, 50644, 53444
Offset: 1
Keywords
Examples
434 is in the sequence because the divisors are {1, 2, 7, 14, 31, 62, 217, 434} => sum of even divisors = 2+14+62+434 = 512 = 8^3 and sum of odd divisors = 1+7+31+217 = 256 = 16^2. 636 is in the sequence because the divisors are {1, 2, 3, 4, 6, 12, 53, 106, 159, 212, 318, 636} => sum of even divisors = 2+4+6+12+106+212+318+636 = 1296 = 36^2 and sum of odd divisors = 1+3+53+159 = 216 = 6^3.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Programs
-
Maple
with(numtheory): for n from 2 by 2 to 500000 do: y:=divisors(n):n1:=nops(y):s0:=0:s1:=0: for k from 1 to n1 do: if irem(y[k], 2)=0 then s0:=s0+ y[k]: else s1:=s1+ y[k]: fi: od: ii:=0: for a from 1 to 1000 while(ii=0)do: for i from 2 to 3 do: if s0=a^i then for b from 1 to 1000 while(ii=0) do: if s1=b^(5-i) then ii:=1:printf(`%d, `,n): else fi: od: fi: od: od: od:
-
Mathematica
es[n_] := 2 DivisorSigma[1, n/2]; os[n_] := DivisorSigma[1, n] - es[n]; powQ[n_] := Or @@ IntegerQ /@ (n^(1/{2, 3})); Select[2 Range[10^4], powQ@ es@ # && powQ@ os@ # &] (* Giovanni Resta, May 28 2016 *)
-
PARI
isA002760(n)=issquare(n) || ispower(n,3) is(n)=n%2==0 && isA002760(2*sigma(n/2)) && isA002760(sigma(n>>valuation(n,2))) \\ Charles R Greathouse IV, Jun 08 2016
Comments