cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A263695 Even numbers such that the sum of the even divisors and the sum of the odd divisors are a square or a cube.

Original entry on oeis.org

6, 14, 434, 636, 748, 762, 4620, 5964, 6204, 6324, 6580, 6820, 7084, 7660, 8404, 8636, 8804, 9010, 9710, 11342, 11920, 23622, 29820, 31020, 31620, 32844, 35420, 36204, 38964, 39804, 40044, 42020, 43180, 44020, 45724, 46004, 47564, 48484, 49146, 50644, 53444
Offset: 1

Views

Author

Michel Lagneau, May 28 2016

Keywords

Comments

It seems that the two sums are never both a square or a cube.
Conjecture [False!]: All squares belonging to a pair are associated with a unique cube. Conversely, all cubes are associated with a unique square.
The corresponding pairs (sum of even divisors, sum of odd divisors) are (2^3, 2^2), (4^2, 2^3), (8^3, 16^2), (36^2, 6^3), (36^2, 6^3), (32^2, 8^3), 11 times the pair (24^3, 48^2), 3 times the pair (108^2, 18^3), (30^3, 30^2), (32^3, 128^2), 16 times the pair (288^2, 24^3),...
We observe several classes of numbers that generate identical pairs, for example:
{636, 748} => pair (36^2, 6^3);
{4620, 5964, 6204, 6324,... } => pair (24^3, 48^2);
{9010, 9710, 11342} => pair (108^2, 18^3);
{29820, 31020, 31620, 32844, 35420,... } => pair (288^2, 24^3);
{69576, 72168, 87752, 98552,...} => pair (56^3, 112^2);
The conjecture above is false. Consider for example the triples of numbers {69576, 938184, 7505472} or {958528, 952520, 12382760}. For the first one the (even, odd) sum of divisors pairs are (56^3, 112^2), (1568^2, 56^3), and (4704^2, 56^3). - Giovanni Resta, May 28 2016

Examples

			434 is in the sequence because the divisors are {1, 2, 7, 14, 31, 62, 217, 434} => sum of even divisors = 2+14+62+434 = 512 = 8^3 and sum of odd divisors = 1+7+31+217 = 256 = 16^2.
636 is in the sequence because the divisors are {1, 2, 3, 4, 6, 12, 53, 106, 159, 212, 318, 636} => sum of even divisors = 2+4+6+12+106+212+318+636 = 1296 = 36^2 and sum of odd divisors = 1+3+53+159 = 216 = 6^3.
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    for n from 2 by 2  to 500000 do:
       y:=divisors(n):n1:=nops(y):s0:=0:s1:=0:
         for k from 1 to n1 do:
           if irem(y[k], 2)=0
            then
            s0:=s0+ y[k]:
            else
            s1:=s1+ y[k]:
          fi:
         od:
         ii:=0:
            for a from 1 to 1000 while(ii=0)do:
            for i from 2 to 3 do:
             if s0=a^i
              then
               for b from 1 to 1000 while(ii=0) do:
                 if s1=b^(5-i)
                  then
                  ii:=1:printf(`%d, `,n):
                  else
                 fi:
               od:
              fi:
            od:
          od:
         od:
  • Mathematica
    es[n_] := 2 DivisorSigma[1, n/2]; os[n_] := DivisorSigma[1, n] - es[n]; powQ[n_] := Or @@ IntegerQ /@ (n^(1/{2, 3})); Select[2 Range[10^4], powQ@ es@ # && powQ@ os@ # &] (* Giovanni Resta, May 28 2016 *)
  • PARI
    isA002760(n)=issquare(n) || ispower(n,3)
    is(n)=n%2==0 && isA002760(2*sigma(n/2)) && isA002760(sigma(n>>valuation(n,2))) \\ Charles R Greathouse IV, Jun 08 2016