cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A263714 T(n,k)=Number of length n arrays of permutations of 0..n-1 with each element moved by -k to k places and every four consecutive elements having its maximum within 4 of its minimum.

Original entry on oeis.org

1, 1, 2, 1, 2, 3, 1, 2, 6, 5, 1, 2, 6, 14, 8, 1, 2, 6, 24, 31, 11, 1, 2, 6, 24, 78, 34, 17, 1, 2, 6, 24, 120, 60, 39, 25, 1, 2, 6, 24, 120, 72, 50, 46, 37, 1, 2, 6, 24, 120, 144, 54, 52, 64, 57, 1, 2, 6, 24, 120, 144, 60, 54, 70, 104, 84, 1, 2, 6, 24, 120, 144, 108, 54, 72, 116, 161, 127, 1
Offset: 1

Views

Author

R. H. Hardin, Oct 24 2015

Keywords

Comments

Table starts
...1...1...1...1...1...1...1...1...1...1...1...1...1...1...1...1...1...1...1
...2...2...2...2...2...2...2...2...2...2...2...2...2...2...2...2...2...2...2
...3...6...6...6...6...6...6...6...6...6...6...6...6...6...6...6...6...6...6
...5..14..24..24..24..24..24..24..24..24..24..24..24..24..24..24..24..24..24
...8..31..78.120.120.120.120.120.120.120.120.120.120.120.120.120.120.120.120
..11..34..60..72.144.144.144.144.144.144.144.144.144.144.144.144.144.144.144
..17..39..50..54..60.108.108.108.108.108.108.108.108.108.108.108.108.108.108
..25..46..52..54..54..60.108.108.108.108.108.108.108.108.108.108.108.108.108
..37..64..70..72..72..72..81.144.144.144.144.144.144.144.144.144.144.144.144
..57.104.116.120.120.120.120.147.240.240.240.240.240.240.240.240.240.240.240
..84.161.184.192.192.192.192.192.228.384.384.384.384.384.384.384.384.384.384
.127.249.292.308.308.308.308.308.308.368.616.616.616.616.616.616.616.616.616
.191.385.449.480.480.480.480.480.480.480.576.960.960.960.960.960.960.960.960

Examples

			Some solutions for n=7 k=4
..0....0....1....0....0....0....0....3....1....0....0....0....0....1....1....0
..1....1....0....1....4....1....1....0....0....1....2....1....1....0....0....1
..3....3....3....2....1....3....2....1....3....3....1....2....3....4....4....4
..4....2....4....3....3....4....4....4....2....2....4....3....2....2....3....2
..2....5....2....5....5....5....5....2....4....4....3....4....4....3....2....3
..5....4....5....6....2....6....3....5....5....5....5....5....6....5....5....5
..6....6....6....4....6....2....6....6....6....6....6....6....5....6....6....6
		

Formula

Empirical for column k:
k=1: a(n) = a(n-1) +a(n-3) -a(n-4) +2*a(n-5) -a(n-6) +a(n-7)
k=2: a(n) = a(n-1) +a(n-3) -a(n-4) +2*a(n-5) -a(n-6) +a(n-7) for n>18
k=3: a(n) = a(n-1) +a(n-3) -a(n-4) +2*a(n-5) -a(n-6) +a(n-7) for n>18
k=4: a(n) = a(n-1) +a(n-3) -a(n-4) +2*a(n-5) -a(n-6) +a(n-7) for n>18
k=5: a(n) = a(n-1) +a(n-3) -a(n-4) +2*a(n-5) -a(n-6) +a(n-7) for n>18
k=6: a(n) = a(n-1) +a(n-3) -a(n-4) +2*a(n-5) -a(n-6) +a(n-7) for n>18
k=7: a(n) = a(n-1) +a(n-3) -a(n-4) +2*a(n-5) -a(n-6) +a(n-7) for n>18