A263714 T(n,k)=Number of length n arrays of permutations of 0..n-1 with each element moved by -k to k places and every four consecutive elements having its maximum within 4 of its minimum.
1, 1, 2, 1, 2, 3, 1, 2, 6, 5, 1, 2, 6, 14, 8, 1, 2, 6, 24, 31, 11, 1, 2, 6, 24, 78, 34, 17, 1, 2, 6, 24, 120, 60, 39, 25, 1, 2, 6, 24, 120, 72, 50, 46, 37, 1, 2, 6, 24, 120, 144, 54, 52, 64, 57, 1, 2, 6, 24, 120, 144, 60, 54, 70, 104, 84, 1, 2, 6, 24, 120, 144, 108, 54, 72, 116, 161, 127, 1
Offset: 1
Examples
Some solutions for n=7 k=4 ..0....0....1....0....0....0....0....3....1....0....0....0....0....1....1....0 ..1....1....0....1....4....1....1....0....0....1....2....1....1....0....0....1 ..3....3....3....2....1....3....2....1....3....3....1....2....3....4....4....4 ..4....2....4....3....3....4....4....4....2....2....4....3....2....2....3....2 ..2....5....2....5....5....5....5....2....4....4....3....4....4....3....2....3 ..5....4....5....6....2....6....3....5....5....5....5....5....6....5....5....5 ..6....6....6....4....6....2....6....6....6....6....6....6....5....6....6....6
Links
- R. H. Hardin, Table of n, a(n) for n = 1..618
Formula
Empirical for column k:
k=1: a(n) = a(n-1) +a(n-3) -a(n-4) +2*a(n-5) -a(n-6) +a(n-7)
k=2: a(n) = a(n-1) +a(n-3) -a(n-4) +2*a(n-5) -a(n-6) +a(n-7) for n>18
k=3: a(n) = a(n-1) +a(n-3) -a(n-4) +2*a(n-5) -a(n-6) +a(n-7) for n>18
k=4: a(n) = a(n-1) +a(n-3) -a(n-4) +2*a(n-5) -a(n-6) +a(n-7) for n>18
k=5: a(n) = a(n-1) +a(n-3) -a(n-4) +2*a(n-5) -a(n-6) +a(n-7) for n>18
k=6: a(n) = a(n-1) +a(n-3) -a(n-4) +2*a(n-5) -a(n-6) +a(n-7) for n>18
k=7: a(n) = a(n-1) +a(n-3) -a(n-4) +2*a(n-5) -a(n-6) +a(n-7) for n>18
Comments