A263730 Irregular triangle read by rows in which row n > 1 lists k such that (k^2 + k*n)/(k + 1) is an integer.
0, 0, 1, 0, 2, 0, 1, 3, 0, 4, 0, 1, 2, 5, 0, 6, 0, 1, 3, 7, 0, 2, 8, 0, 1, 4, 9, 0, 10, 0, 1, 2, 3, 5, 11, 0, 12, 0, 1, 6, 13, 0, 2, 4, 14, 0, 1, 3, 7, 15, 0, 16, 0, 1, 2, 5, 8, 17, 0, 18, 0, 1, 3, 4, 9, 19, 0, 2, 6, 20, 0, 1, 10, 21, 0, 22, 0, 1, 2, 3, 5, 7, 11, 23, 0, 4, 24, 0, 1, 12, 25
Offset: 2
Examples
n\k| 0 1 2 3 4 5 6 7 8 9 10 ---+------------------------------------------ 0 | 0 1 | 0 1 2 3 4 5 6 7 8 9 10 2 | 0 3 | 0 1 4 | 0 2 5 | 0 1 3 6 | 0 4 7 | 0 1 2 5 8 | 0 6 9 | 0 1 3 7 10 | 0 2 8 11 | 0 1 4 9 12 | 0 10 13 | 0 1 2 3 5 11
Links
- Harvey P. Dale, Table of n, a(n) for n = 2..1000
Programs
-
Mathematica
Table[Select[Range[0,n-2],Divisible[#^2+n #,#+1]&],{n,30}]//Flatten (* Harvey P. Dale, Dec 27 2016 *)
-
PARI
tabf(nn) = {for (n=2, nn, for (k=0, n, if (!((k^2 + k*n) % (k+1)), print1(k, ", "));); print(););} \\ Michel Marcus, Oct 25 2015
Formula
a(n) = A027750(n) - 1.
Comments