cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A263756 Triangle read by rows: T(n,k) (n>=0, k>=0) is the number of permutations of n with sum of descent bottoms equal to k.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 1, 1, 7, 3, 8, 3, 1, 1, 1, 15, 7, 34, 18, 14, 18, 8, 3, 1, 1, 1, 31, 15, 122, 72, 69, 147, 83, 71, 33, 45, 18, 8, 3, 1, 1, 1, 63, 31, 406, 252, 263, 822, 544, 554, 399, 613, 351, 307, 160, 102, 96, 45, 18, 8, 3, 1, 1, 1, 127, 63, 1298, 828
Offset: 0

Views

Author

Christian Stump, Oct 19 2015

Keywords

Comments

Row sums give A000142.

Examples

			Triangle begins:
  1;
  1;
  1,1;
  1,3,1,1;
  1,7,3,8,3,1,1;
  1,15,7,34,18,14,18,8,3,1,1;
  1,31,15,122,72,69,147,83,71,33,45,18,8,3,1,1;
  ...
		

Crossrefs

Programs

  • Maple
    b:= proc(s) option remember; (n-> `if`(n=0, 1, expand(
          add(b(s minus {j})*`if`(j (p-> seq(coeff(p, x, i), i=0..degree(p)))(b({$1..n})):
    seq(T(n), n=0..9);  # Alois P. Heinz, Oct 25 2015, revised, Jan 31 2023
  • Mathematica
    b[s_] := b[s] = With[{n = Length[s]}, If[n == 0, 1, Expand[       Sum[b[s~Complement~{j}]*If[j < n, x^j, 1], {j, s}]]]];
    T[n_] := CoefficientList[b[Range[n]], x];
    Table[T[n], {n, 0, 9}] // Flatten (* Jean-François Alcover, May 26 2023, after Alois P. Heinz *)

Extensions

Two terms (for rows 0 and 1) prepended and more terms from Alois P. Heinz, Oct 25 2015

A369596 Number T(n,k) of permutations of [n] whose fixed points sum to k; triangle T(n,k), n>=0, 0<=k<=A000217(n), read by rows.

Original entry on oeis.org

1, 0, 1, 1, 0, 0, 1, 2, 1, 1, 1, 0, 0, 1, 9, 2, 2, 3, 3, 2, 1, 1, 0, 0, 1, 44, 9, 9, 11, 11, 13, 5, 5, 4, 4, 2, 1, 1, 0, 0, 1, 265, 44, 44, 53, 53, 62, 64, 29, 22, 24, 16, 16, 8, 6, 5, 4, 2, 1, 1, 0, 0, 1, 1854, 265, 265, 309, 309, 353, 362, 406, 150, 159, 126, 126, 93, 86, 44, 36, 29, 19, 19, 9, 7, 5, 4, 2, 1, 1, 0, 0, 1
Offset: 0

Views

Author

Alois P. Heinz, Mar 02 2024

Keywords

Examples

			T(3,0) = 2: 231, 312.
T(3,1) = 1: 132.
T(3,2) = 1: 321.
T(3,3) = 1: 213.
T(3,6) = 1: 123.
T(4,0) = 9: 2143, 2341, 2413, 3142, 3412, 3421, 4123, 4312, 4321.
Triangle T(n,k) begins:
   1;
   0, 1;
   1, 0, 0,  1;
   2, 1, 1,  1,  0,  0, 1;
   9, 2, 2,  3,  3,  2, 1, 1, 0, 0, 1;
  44, 9, 9, 11, 11, 13, 5, 5, 4, 4, 2, 1, 1, 0, 0, 1;
  ...
		

Crossrefs

Column k=0 gives A000166.
Column k=3 gives A000255(n-2) for n>=2.
Row sums give A000142.
Row lengths give A000124.
Reversed rows converge to A331518.
T(n,n) gives A369796.

Programs

  • Maple
    b:= proc(s) option remember; (n-> `if`(n=0, 1, add(expand(
          `if`(j=n, x^j, 1)*b(s minus {j})), j=s)))(nops(s))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b({$1..n})):
    seq(T(n), n=0..7);
    # second Maple program:
    g:= proc(n) option remember; `if`(n=0, 1, n*g(n-1)+(-1)^n) end:
    b:= proc(n, i, m) option remember; `if`(n>i*(i+1)/2, 0,
         `if`(n=0, g(m), b(n, i-1, m)+b(n-i, min(n-i, i-1), m-1)))
        end:
    T:= (n, k)-> b(k, min(n, k), n):
    seq(seq(T(n, k), k=0..n*(n+1)/2), n=0..7);
  • Mathematica
    g[n_] := g[n] = If[n == 0, 1, n*g[n - 1] + (-1)^n];
    b[n_, i_, m_] := b[n, i, m] = If[n > i*(i + 1)/2, 0,
       If[n == 0, g[m], b[n, i-1, m] + b[n-i, Min[n-i, i-1], m-1]]];
    T[n_, k_] := b[k, Min[n, k], n];
    Table[Table[T[n, k], {k, 0, n*(n + 1)/2}], {n, 0, 7}] // Flatten (* Jean-François Alcover, May 24 2024, after Alois P. Heinz *)

Formula

Sum_{k=0..A000217(n)} k * T(n,k) = A001710(n+1) for n >= 1.
Sum_{k=0..A000217(n)} (1+k) * T(n,k) = A038720(n) for n >= 1.
Sum_{k=0..A000217(n)} (n*(n+1)/2-k) * T(n,k) = A317527(n+1).
T(n,A161680(n)) = A331518(n).
T(n,A000217(n)) = 1.
Showing 1-2 of 2 results.