cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A263756 Triangle read by rows: T(n,k) (n>=0, k>=0) is the number of permutations of n with sum of descent bottoms equal to k.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 1, 1, 7, 3, 8, 3, 1, 1, 1, 15, 7, 34, 18, 14, 18, 8, 3, 1, 1, 1, 31, 15, 122, 72, 69, 147, 83, 71, 33, 45, 18, 8, 3, 1, 1, 1, 63, 31, 406, 252, 263, 822, 544, 554, 399, 613, 351, 307, 160, 102, 96, 45, 18, 8, 3, 1, 1, 1, 127, 63, 1298, 828
Offset: 0

Views

Author

Christian Stump, Oct 19 2015

Keywords

Comments

Row sums give A000142.

Examples

			Triangle begins:
  1;
  1;
  1,1;
  1,3,1,1;
  1,7,3,8,3,1,1;
  1,15,7,34,18,14,18,8,3,1,1;
  1,31,15,122,72,69,147,83,71,33,45,18,8,3,1,1;
  ...
		

Crossrefs

Programs

  • Maple
    b:= proc(s) option remember; (n-> `if`(n=0, 1, expand(
          add(b(s minus {j})*`if`(j (p-> seq(coeff(p, x, i), i=0..degree(p)))(b({$1..n})):
    seq(T(n), n=0..9);  # Alois P. Heinz, Oct 25 2015, revised, Jan 31 2023
  • Mathematica
    b[s_] := b[s] = With[{n = Length[s]}, If[n == 0, 1, Expand[       Sum[b[s~Complement~{j}]*If[j < n, x^j, 1], {j, s}]]]];
    T[n_] := CoefficientList[b[Range[n]], x];
    Table[T[n], {n, 0, 9}] // Flatten (* Jean-François Alcover, May 26 2023, after Alois P. Heinz *)

Extensions

Two terms (for rows 0 and 1) prepended and more terms from Alois P. Heinz, Oct 25 2015