cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A263729 Primes p where (p - 1)/k - 1 is not prime for any integer k >= 1.

Original entry on oeis.org

2, 3, 11, 23, 47, 59, 83, 107, 131, 167, 179, 227, 251, 263, 347, 359, 383, 431, 443, 467, 479, 503, 563, 587, 599, 719, 839, 863, 887, 947, 983, 1019, 1031, 1091, 1187, 1223, 1283, 1307, 1319, 1367, 1439, 1451, 1487
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Oct 24 2015

Keywords

Comments

Primes p such that (p^2 + p*q)/(p + 1) is not integer for all primes q.
Primes p such that d1 - 1, d2 - 1, .. are not primes where d1, d2, .. are all divisors of p - 1.

Examples

			11 is in this sequence because (11 - 1)/1 - 1 = 9, (11 - 1)/2 - 1 = 4, (11 - 1)/5 - 1 = 1, (11 - 1)/10 - 1 = 0 are nonprimes and 11 is prime.
		

Crossrefs

Programs

  • PARI
    lista(nn) = {forprime (p=2, nn, ok = 1; for (k=1, p-1, x = (p-1)/k - 1; if (denominator(x)==1 && isprime(x), ok = 0; break);); if (ok, print1(p, ", ")););} \\ Michel Marcus, Nov 02 2015

Extensions

Name edited by Franklin T. Adams-Watters, Oct 31 2015

A263769 Smallest prime q such that q == -1 (mod prime(n)-1).

Original entry on oeis.org

2, 3, 3, 5, 19, 11, 31, 17, 43, 83, 29, 71, 79, 41, 137, 103, 173, 59, 131, 139, 71, 233, 163, 263, 191, 199, 101, 211, 107, 223, 251, 389, 271, 137, 443, 149, 311, 647, 331, 859, 1423, 179, 379, 191, 587, 197, 419, 443
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Oct 25 2015

Keywords

Comments

a(n): A000040(1), A065091(1), A002145(1), A007528(1), A030433(1), A068231(1), A127576(1), A061242(1), A141857(1), A141976(1), A132236(1), A142111(1), A142198(1), A141898(1), A141926(1), A142531(1), A142004(1), A142799(1), A142068(1), A142099(1), ...
Smallest prime q such that (prime(n)^2 + q*prime(n))/(prime(n) + 1) is an integer.

Examples

			a(4) = 5 because 5 == -1 (mod prime(4)-1) and is prime.
		

Crossrefs

Programs

  • Maple
    for n from 1 to 100 do
      k:= ithprime(n)-1;
      q:= 2;
      while (1 + q) mod k <> 0 do
        q:= nextprime(q)
      od;
      A[n]:= q;
    od:
    seq(A[i],i=1..1000); # Robert Israel, Oct 26 2015
  • Mathematica
    Table[q = 2; z = Prime@ n - 1; While[Mod[q, z] != z - 1, q = NextPrime@ q]; q, {n, 59}] (* Michael De Vlieger, Oct 26 2015 *)

Extensions

Corrected and edited by Robert Israel, Oct 26 2015,
Showing 1-2 of 2 results.