cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A263730 Irregular triangle read by rows in which row n > 1 lists k such that (k^2 + k*n)/(k + 1) is an integer.

Original entry on oeis.org

0, 0, 1, 0, 2, 0, 1, 3, 0, 4, 0, 1, 2, 5, 0, 6, 0, 1, 3, 7, 0, 2, 8, 0, 1, 4, 9, 0, 10, 0, 1, 2, 3, 5, 11, 0, 12, 0, 1, 6, 13, 0, 2, 4, 14, 0, 1, 3, 7, 15, 0, 16, 0, 1, 2, 5, 8, 17, 0, 18, 0, 1, 3, 4, 9, 19, 0, 2, 6, 20, 0, 1, 10, 21, 0, 22, 0, 1, 2, 3, 5, 7, 11, 23, 0, 4, 24, 0, 1, 12, 25
Offset: 2

Views

Author

Juri-Stepan Gerasimov, Oct 25 2015

Keywords

Comments

Minimal value of k is 0 and maximal value of k is n - 2 for n-th row.
Length of rows gives A000005.
Sum of rows gives A065608.

Examples

			  n\k| 0   1   2   3   4   5   6   7   8   9  10
  ---+------------------------------------------
   0 | 0
   1 | 0   1   2   3   4   5   6   7   8   9  10
   2 | 0
   3 | 0   1
   4 | 0   2
   5 | 0   1   3
   6 | 0   4
   7 | 0   1   2   5
   8 | 0   6
   9 | 0   1   3   7
  10 | 0   2   8
  11 | 0   1   4   9
  12 | 0  10
  13 | 0   1   2   3   5  11
		

Crossrefs

Programs

  • Mathematica
    Table[Select[Range[0,n-2],Divisible[#^2+n #,#+1]&],{n,30}]//Flatten (* Harvey P. Dale, Dec 27 2016 *)
  • PARI
    tabf(nn) = {for (n=2, nn, for (k=0, n, if (!((k^2 + k*n) % (k+1)), print1(k, ", "));); print(););} \\ Michel Marcus, Oct 25 2015

Formula

a(n) = A027750(n) - 1.

A263770 Smallest prime q such that (prime(n)^2 + q*prime(n))/(prime(n) + 1) is an integer.

Original entry on oeis.org

7, 5, 7, 17, 13, 29, 19, 41, 73, 31, 97, 191, 43, 89, 97, 109, 61, 311, 137, 73, 149, 241, 337, 181, 197, 103, 313, 109, 331, 229, 257, 397, 139, 281, 151, 457, 317, 821, 337, 349, 181, 547, 193, 389, 199, 401, 1061, 449, 229, 461, 937, 241, 727, 757, 1033, 1321, 271, 1361, 557
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Oct 25 2015

Keywords

Comments

Least prime q such that q == 1 (mod prime(n) + 1).

Crossrefs

Programs

  • Mathematica
    Table[q = 2; While[! IntegerQ[(Prime[n]^2 + q Prime@ n)/(Prime@ n + 1)], q = NextPrime@ q]; q, {n, 59}] (* Michael De Vlieger, Oct 26 2015 *)
  • PARI
    a(n) = {p = prime(n); q = 2; while ((p^2 + p*q) % (p + 1), q = nextprime(q+1)); q;} \\ Michel Marcus, Oct 26 2015

Formula

5 is in this sequence because (prime(2)^2 + 5*prime(2))/(prime(2) + 1) = 6 and 5 is prime.
Showing 1-2 of 2 results.