cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A263790 The number of length-n permutations avoiding the patterns 1234, 1324 and 2143.

Original entry on oeis.org

1, 1, 2, 6, 21, 75, 268, 958, 3425, 12245, 43778, 156514, 559565, 2000543, 7152292, 25570698, 91419729, 326841561, 1168515890, 4177649198, 14935828405, 53398205443, 190907947468, 682529386598, 2440162233937, 8724007852045, 31189857766034, 111509210441322, 398664979703373
Offset: 0

Views

Author

Christian Bean, Nov 23 2015

Keywords

Programs

  • Magma
    I:=[1,1,2,6]; [n le 4 select I[n] else 4*Self(n-1)-2*Self(n-2)+2*Self(n-3)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Jan 01 2016
  • Maple
    t1:=(1-3*x-2*x^3)/(1-4*x+2*x^2-2*x^3+x^4);
    series(t1,x,40);
    seriestolist(%); # N. J. A. Sloane, Nov 09 2016
  • Mathematica
    LinearRecurrence[{4, -2, 2, -1}, {1, 1, 2, 6}, 30] (* Jean-François Alcover, Dec 31 2015 *)
    CoefficientList[Series[(2 x^3 + 3 x - 1)/(-x^4 + 2*x^3 - 2 x^2 + 4 x - 1), {x, 0, 35}], x] (* Vincenzo Librandi, Jan 01 2016 *)
  • PARI
    Vec((2*x^3 + 3*x - 1)/(-x^4 + 2*x^3 - 2*x^2 + 4*x - 1) + O(x^50)) \\ Michel Marcus, Nov 23 2015
    

Formula

G.f.: (2*x^3 + 3*x - 1)/(-x^4 + 2*x^3 - 2*x^2 + 4*x - 1).