A263790 The number of length-n permutations avoiding the patterns 1234, 1324 and 2143.
1, 1, 2, 6, 21, 75, 268, 958, 3425, 12245, 43778, 156514, 559565, 2000543, 7152292, 25570698, 91419729, 326841561, 1168515890, 4177649198, 14935828405, 53398205443, 190907947468, 682529386598, 2440162233937, 8724007852045, 31189857766034, 111509210441322, 398664979703373
Offset: 0
Links
- C. Bean, M. Tannock and H. Ulfarsson, Pattern avoiding permutations and independent sets in graphs, arXiv:1512.08155 [math.CO], 2015, eq. (4).
- D. Callan, T. Mansour, Enumeration of small Wilf classes avoiding 1324 and two other 4-letter patterns, arXiv:1705.00933 [math.CO] (2017), Table 2 No 181.
- Index entries for linear recurrences with constant coefficients, signature (4,-2,2,-1).
Programs
-
Magma
I:=[1,1,2,6]; [n le 4 select I[n] else 4*Self(n-1)-2*Self(n-2)+2*Self(n-3)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Jan 01 2016
-
Maple
t1:=(1-3*x-2*x^3)/(1-4*x+2*x^2-2*x^3+x^4); series(t1,x,40); seriestolist(%); # N. J. A. Sloane, Nov 09 2016
-
Mathematica
LinearRecurrence[{4, -2, 2, -1}, {1, 1, 2, 6}, 30] (* Jean-François Alcover, Dec 31 2015 *) CoefficientList[Series[(2 x^3 + 3 x - 1)/(-x^4 + 2*x^3 - 2 x^2 + 4 x - 1), {x, 0, 35}], x] (* Vincenzo Librandi, Jan 01 2016 *)
-
PARI
Vec((2*x^3 + 3*x - 1)/(-x^4 + 2*x^3 - 2*x^2 + 4*x - 1) + O(x^50)) \\ Michel Marcus, Nov 23 2015
Formula
G.f.: (2*x^3 + 3*x - 1)/(-x^4 + 2*x^3 - 2*x^2 + 4*x - 1).