A263811 Numbers k such that k = tau(k) * phi(k-1) + 1.
3, 5, 17, 25, 49, 257, 289, 65537
Offset: 1
Examples
17 is in this sequence because 17 = tau(17)*phi(16) + 1 = 2*8 + 1.
Crossrefs
Programs
-
Magma
[n: n in [2..1000000] | n eq NumberOfDivisors(n) * EulerPhi(n-1) + 1];
-
Mathematica
Select[Range[10^5], # == DivisorSigma[0, #] EulerPhi[# - 1] + 1 &] (* Michael De Vlieger, Nov 05 2015 *)
-
PARI
for(n=1, 1e5, if( n-1 == numdiv(n)*eulerphi(n-1) , print1(n, ", "))) \\ Altug Alkan, Nov 05 2015
Comments