cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A263825 Total number c_{pi_1(B_1)}(n) of n-coverings over the first amphicosm.

Original entry on oeis.org

1, 7, 5, 23, 7, 39, 9, 65, 18, 61, 13, 143, 15, 87, 35, 183, 19, 182, 21, 245, 45, 151, 25, 465, 38, 189, 58, 375, 31, 429, 33, 549, 65, 277, 63, 806, 39, 327, 75, 875, 43, 663, 45, 719, 126, 439, 49, 1535, 66, 650, 95, 933, 55, 982, 91, 1425, 105, 637, 61, 2093
Offset: 1

Views

Author

N. J. A. Sloane, Oct 28 2015

Keywords

Crossrefs

Programs

  • Maple
    A263825 := proc(n)
        local a,l,m,s1,s2,s3,s4 ;
        # Theorem 2
        a := 0 ;
        for l in numtheory[divisors](n) do
            m := n/l ;
            s1 := 0 ;
            for twok in numtheory[divisors](m) do
                if type(twok,'even') then
                    k := twok/2 ;
                    s1 := s1+numtheory[sigma](k)*k ;
                end if;
            end do:
            s2 := 0 ;
            for d in numtheory[divisors](l) do
                s2 := s2+numtheory[mobius](l/d)*d^2*igcd(2,d) ;
            end do:
            s3 := 0 ;
            for k in numtheory[divisors](m) do
                s3 := s3+numtheory[sigma](m/k)*k ;
                if modp(m,2*k) = 0 then
                    s3 := s3-numtheory[sigma](m/2/k)*k ;
                end if;
            end do:
            s4 := 0 ;
            for twok in numtheory[divisors](m) do
                if type(twok,'even') then
                    s4 := s4+numtheory[sigma](m/twok)*twok ;
                    if modp(m,2*twok) = 0 then
                        s4 := s4-numtheory[sigma](m/2/twok)*twok ;
                    end if;
                end if;
            end do:
            a := a+A059376(l)*s1 + s2*s3 + A007434(l)*s4 ;
        end do:
        a/n ;
    end proc: # R. J. Mathar, Nov 03 2015
  • Mathematica
    A007434[n_] := Sum[ MoebiusMu[n/d] * d^2, {d, Divisors[n]}];
    A059376[n_] := Sum[ MoebiusMu[n/d] * d^3, {d, Divisors[n]}];
    A263825[n_] := Module[{a, l, m, s1, s2, s3, s4},
    a = 0;
    Do[m = n/l;
    s1 = 0; Do[If[EvenQ[twok], k = twok/2; s1 = s1 + DivisorSigma[1, k]*k], {twok, Divisors[m]}];
    s2 = 0; Do[s2 = s2 + MoebiusMu[l/d]*d^2*GCD[2, d], {d, Divisors[l]}];
    s3 = 0; Do[s3 = s3 + DivisorSigma[1, m/k]*k ; If[Mod[m, 2*k] == 0, s3 = s3 - DivisorSigma[1, m/2/k]*k], {k, Divisors[m]}];
    s4 = 0; Do[If[EvenQ[twok], s4 = s4 + DivisorSigma[1, m/twok]*twok; If[ Mod[m, 2*twok] == 0, s4 = s4 - DivisorSigma[1, m/2/twok]*twok]], {twok, Divisors[m]}]; a = a + A059376[l]*s1 + s2*s3 + A007434[l]*s4,
    {l, Divisors[n]}]; a/n
    ];
    Array[A263825, 60] (* Jean-François Alcover, Nov 21 2017, after R. J. Mathar *)
  • PARI
    A001001(n) = sumdiv(n, d, sigma(d) * d);
    A007434(n) = sumdiv(n, d, moebius(n\d) * d^2);
    A059376(n) = sumdiv(n, d, moebius(n\d) * d^3);
    A060640(n) = sumdiv(n, d, sigma(n\d) * d);
    EpiPcZn(n) = sumdiv(n, d, moebius(n\d) * d^2 * gcd(d,2));
    S1(n)      = if (n%2, 0, A001001(n\2));
    S11(n)     = A060640(n) - if(n%2, 0, A060640(n\2));
    S21(n)     = if (n%2, 0, 2*A060640(n\2)) - if (n%4, 0, 2*A060640(n\4));
    a(n) = { 1/n * sumdiv(n, d,
      A059376(d) * S1(n\d) + EpiPcZn(d) * S11(n\d) + A007434(d) * S21(n\d));
    };
    vector(60, n, a(n))  \\ Gheorghe Coserea, May 04 2016