A263830 The number c_{Z^3,pi_1(B_2)}(2n) of 3-torus 2n-coverings over the second amphicosm.
1, 5, 9, 23, 19, 53, 33, 93, 74, 119, 73, 255, 99, 213, 219, 363, 163, 482, 201, 581, 393, 485, 289, 1085, 422, 663, 634, 1047, 451, 1463, 513, 1417, 897, 1103, 915, 2374, 723, 1365, 1227, 2511, 883, 2661, 969, 2399, 2078, 1973, 1153, 4419
Offset: 1
Keywords
Links
- Gheorghe Coserea, Table of n, a(n) for n = 1..20000
- G. Chelnokov, M. Deryagina, A. Mednykh, On the Coverings of Amphicosms; Revised title: On the coverings of Euclidian manifolds B_1 and B_2, arXiv preprint arXiv:1502.01528 [math.AT], 2015.
Programs
-
Mathematica
a[n_] := 1/2 Sum[Sum[(d^2 + 3/2 + 1/2 (-1)^Mod[d, 2] + (-1)^Mod[Quotient[n, d m], 2] + (-1)^Mod[d+Quotient[n, d m], 2])m, {m, Divisors[Quotient[n, d] ]}], {d, Divisors[n]}]; Array[a, 48] (* Jean-François Alcover, Sep 16 2018, after Gheorghe Coserea *)
-
PARI
a(n) = { 1/2 * sumdiv(n, d, sumdiv(n\d, m, (sqr(d) + 3/2 + 1/2*(-1)^(d%2) + (-1)^((n\(d*m))%2) + (-1)^((d + n\(d*m))%2)) * m)); }; vector(48, n, a(n)) \\ Gheorghe Coserea, May 05 2016
Extensions
More terms from Gheorghe Coserea, May 05 2016