cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A263830 The number c_{Z^3,pi_1(B_2)}(2n) of 3-torus 2n-coverings over the second amphicosm.

Original entry on oeis.org

1, 5, 9, 23, 19, 53, 33, 93, 74, 119, 73, 255, 99, 213, 219, 363, 163, 482, 201, 581, 393, 485, 289, 1085, 422, 663, 634, 1047, 451, 1463, 513, 1417, 897, 1103, 915, 2374, 723, 1365, 1227, 2511, 883, 2661, 969, 2399, 2078, 1973, 1153, 4419
Offset: 1

Views

Author

N. J. A. Sloane, Oct 28 2015

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := 1/2 Sum[Sum[(d^2 + 3/2 + 1/2 (-1)^Mod[d, 2] + (-1)^Mod[Quotient[n, d m], 2] + (-1)^Mod[d+Quotient[n, d m], 2])m, {m, Divisors[Quotient[n, d] ]}], {d, Divisors[n]}];
    Array[a, 48] (* Jean-François Alcover, Sep 16 2018, after Gheorghe Coserea *)
  • PARI
    a(n) = {
      1/2 * sumdiv(n, d, sumdiv(n\d, m,
      (sqr(d) + 3/2 + 1/2*(-1)^(d%2) + (-1)^((n\(d*m))%2) +
      (-1)^((d + n\(d*m))%2)) * m));
    };
    vector(48, n, a(n))  \\ Gheorghe Coserea, May 05 2016

Extensions

More terms from Gheorghe Coserea, May 05 2016

A263832 The number c_{Cc,pi_1(B_2)}(n) of the second amphicosm n-coverings over the second amphicosm.

Original entry on oeis.org

1, 0, 5, 2, 7, 0, 9, 6, 18, 0, 13, 10, 15, 0, 35, 14, 19, 0, 21, 14, 45, 0, 25, 30, 38, 0, 58, 18, 31, 0, 33, 30, 65, 0, 63, 36, 39, 0, 75, 42, 43, 0, 45, 26, 126, 0, 49, 70, 66, 0, 95, 30, 55, 0, 91, 54, 105, 0, 61, 70, 63, 0, 162, 62, 105, 0, 69
Offset: 1

Views

Author

N. J. A. Sloane, Oct 28 2015

Keywords

Crossrefs

Programs

  • Mathematica
    sigma[n_] := DivisorSigma[1, n]; q = Quotient;
    a[n_] := Switch[Mod[n, 4], 0, Sum[sigma[q[n, 2d]] - sigma[q[n, 4d]], {d, Divisors[q[n, 4]]}], 2, 0, 1|3, Sum[sigma[d], {d, Divisors[n]}]];
    Array[a, 70] (* Jean-François Alcover, Dec 01 2018, after Gheorghe Coserea *)
  • PARI
    A007429(n) = sumdiv(n, d, sigma(d));
    a(n) = {
      if (n%2, A007429(n), if (n%4, 0,
          sumdiv(n\4, d, sigma(n\(2*d)) - sigma(n\(4*d)))));
    };
    vector(67, n, a(n))  \\ Gheorghe Coserea, May 05 2016

Extensions

More terms from Gheorghe Coserea, May 05 2016

A263826 The number c_{Z3 pi_1(B_1)}(2n) of 3-torus 2n-coverings over the first amphicosm.

Original entry on oeis.org

1, 7, 9, 29, 19, 63, 33, 107, 74, 133, 73, 285, 99, 231, 219, 393, 163, 518, 201, 623, 393, 511, 289, 1155, 422, 693, 634, 1101, 451, 1533, 513, 1479, 897, 1141, 915, 2482, 723, 1407, 1227, 2609, 883, 2751, 969, 2477, 2078, 2023, 1153, 4569
Offset: 1

Views

Author

N. J. A. Sloane, Oct 28 2015

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := 1/2 Sum[Sum[(d^2 + 5/2 + 3/2 (-1)^Mod[d, 2]) m, {m, Divisors[n/d]} ], {d, Divisors[n]}];
    Array[a, 48] (* Jean-François Alcover, Oct 10 2018, after Gheorghe Coserea *)
  • PARI
    a(n) = 1/2 * sumdiv(n, d, sumdiv(n\d, m, (d^2 + 5/2 + 3/2*(-1)^(d%2))*m));
    vector(48, n, a(n))  \\ Gheorghe Coserea, May 04 2016

Extensions

More terms from Gheorghe Coserea, May 04 2016

A263827 The number c_{Cc pi_1(B_1)}(2n) of the second amphicosm 2n-coverings over the first amphicosm.

Original entry on oeis.org

2, 6, 10, 14, 14, 30, 18, 30, 36, 42, 26, 70, 30, 54, 70, 62, 38, 108, 42, 98, 90, 78, 50, 150, 76, 90, 116, 126, 62, 210, 66, 126, 130, 114, 126, 252, 78, 126, 150, 210, 86, 270, 90, 182, 252, 150, 98, 310, 132, 228, 190, 210, 110, 348, 182, 270, 210, 186, 122, 490, 126, 198, 324, 254, 210, 390, 138, 266, 250, 378
Offset: 1

Views

Author

N. J. A. Sloane, Oct 28 2015

Keywords

Crossrefs

Programs

  • Maple
    A263827 := proc(n)
        local locn,a,twol,fourl ;
        locn := 2*n ;
        # Theorem 3 (iii)
        a := 0 ;
        for twol in numtheory[divisors](locn) do
            if type(twol,'even') then
                a := a+numtheory[sigma](locn/twol) ;
            end if;
        end do:
        for fourl in numtheory[divisors](locn) do
            if modp(fourl,4) = 0 then
                a := a-numtheory[sigma](locn/fourl) ;
            end if;
        end do:
        %*2 ;
    end proc: # R. J. Mathar, Nov 03 2015
  • Mathematica
    a[n_] := 2*Sum[If[Mod[d,4] == 2, DivisorSigma[1, 2*n/d], 0], {d, Divisors[ 2*n ] } ];
    Array[a, 70] (* Jean-François Alcover, Dec 03 2017 *)
  • PARI
    A007429(n) = sumdiv(n, d, sigma(d));
    a(n) = 2*A007429(n) - if(n%2, 0, 2*A007429(n\2));
    vector(70, n, a(n))  \\ Gheorghe Coserea, May 04 2016

A263828 The number c_{P c pi_1(B_1)}(n) of the first amphicosm n-coverings over the first amphicosm.

Original entry on oeis.org

1, 4, 5, 10, 7, 20, 9, 22, 18, 28, 13, 50, 15, 36, 35, 46, 19, 72, 21, 70, 45, 52, 25, 110, 38, 60, 58, 90, 31, 140, 33, 94, 65, 76, 63, 180, 39, 84, 75, 154, 43, 180, 45, 130, 126, 100, 49, 230, 66, 152, 95, 150, 55, 232, 91, 198, 105, 124, 61
Offset: 1

Views

Author

N. J. A. Sloane, Oct 28 2015

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[(3/2 + 1/2 (-1)^Mod[d, 2]) DivisorSigma[1, n/d], {d, Divisors[ n]}] - If[OddQ[n], 0, Sum[(3/2 + 1/2 (-1)^Mod[d, 2]) DivisorSigma[1, n/(2 d)], {d, Divisors[n/2]}]];
    Array[a, 59] (* Jean-François Alcover, Oct 10 2018, after Gheorghe Coserea *)
  • PARI
    a(n) = {
      sumdiv(n, d, (3/2 + 1/2*(-1)^(d%2)) * sigma(n/d)) -
      if (n%2, 0, sumdiv(n\2, d, (3/2 + 1/2*(-1)^(d%2))*sigma(n\(2*d))))
    };
    vector(59, n, a(n))  \\ Gheorghe Coserea, May 04 2016

Extensions

More terms from Gheorghe Coserea, May 04 2016

A263829 Total number c_{pi_1(B_2)}(n) of n-coverings over the second amphicosm.

Original entry on oeis.org

1, 3, 5, 13, 7, 19, 9, 43, 18, 33, 13, 93, 15, 51, 35, 137, 19, 110, 21, 175, 45, 99, 25, 355, 38, 129, 58, 285, 31, 289, 33, 455, 65, 201, 63, 626, 39, 243, 75, 721, 43, 483, 45, 589, 126, 339, 49, 1305, 66, 498, 95, 783, 55, 750, 91, 1227
Offset: 1

Views

Author

N. J. A. Sloane, Oct 28 2015

Keywords

Crossrefs

Programs

  • PARI
    A001001(n) = sumdiv(n, d, sigma(d) * d);
    A007429(n) = sumdiv(n, d, sigma(d));
    A007434(n) = sumdiv(n, d, moebius(n\d) * d^2);
    A059376(n) = sumdiv(n, d, moebius(n\d) * d^3);
    A060640(n) = sumdiv(n, d, sigma(n\d) * d);
    EpiPcZn(n) = sumdiv(n, d, moebius(n\d) * d^2 * gcd(d,2));
    S1(n)      = if (n%2, 0, A001001(n\2));
    S11(n)     = A060640(n) - if(n%2, 0, A060640(n\2));
    S21(n)     = if (n%2, 0, 2*A060640(n\2)) - if (n%4, 0, 2*A060640(n\4));
    S22(n)     = { if (n%2, A060640(n), if (n%4, 0,
      sumdiv(n\4, d, 2*d*(sigma(n\(2*d)) - sigma(n\(4*d))))));
    };
    A027844(n) = S1(n) + S11(n) + S21(n);
    a(n) = { 1/n * sumdiv(n, d,
      A059376(d) * S1(n\d) + EpiPcZn(d) * S21(n\d) + A007434(d) * S22(n\d));
    };
    vector(56, n, a(n))  \\ Gheorghe Coserea, May 04 2016

Extensions

More terms from Gheorghe Coserea, May 04 2016
Showing 1-6 of 6 results.