A263825 Total number c_{pi_1(B_1)}(n) of n-coverings over the first amphicosm.
1, 7, 5, 23, 7, 39, 9, 65, 18, 61, 13, 143, 15, 87, 35, 183, 19, 182, 21, 245, 45, 151, 25, 465, 38, 189, 58, 375, 31, 429, 33, 549, 65, 277, 63, 806, 39, 327, 75, 875, 43, 663, 45, 719, 126, 439, 49, 1535, 66, 650, 95, 933, 55, 982, 91, 1425, 105, 637, 61, 2093
Offset: 1
Keywords
Links
- Gheorghe Coserea, Table of n, a(n) for n = 1..20000
- G. Chelnokov, M. Deryagina, A. Mednykh, On the Coverings of Amphicosms; Revised title: On the coverings of Euclidian manifolds B_1 and B_2, arXiv preprint arXiv:1502.01528 [math.AT], 2015.
- G. Chelnokov, M. Deryagina and A. Mednykh, On the coverings of Euclidean manifolds B_1 and B_2, Communications in Algebra, Vol. 45, No. 4 (2017), 1558-1576.
Programs
-
Maple
A263825 := proc(n) local a,l,m,s1,s2,s3,s4 ; # Theorem 2 a := 0 ; for l in numtheory[divisors](n) do m := n/l ; s1 := 0 ; for twok in numtheory[divisors](m) do if type(twok,'even') then k := twok/2 ; s1 := s1+numtheory[sigma](k)*k ; end if; end do: s2 := 0 ; for d in numtheory[divisors](l) do s2 := s2+numtheory[mobius](l/d)*d^2*igcd(2,d) ; end do: s3 := 0 ; for k in numtheory[divisors](m) do s3 := s3+numtheory[sigma](m/k)*k ; if modp(m,2*k) = 0 then s3 := s3-numtheory[sigma](m/2/k)*k ; end if; end do: s4 := 0 ; for twok in numtheory[divisors](m) do if type(twok,'even') then s4 := s4+numtheory[sigma](m/twok)*twok ; if modp(m,2*twok) = 0 then s4 := s4-numtheory[sigma](m/2/twok)*twok ; end if; end if; end do: a := a+A059376(l)*s1 + s2*s3 + A007434(l)*s4 ; end do: a/n ; end proc: # R. J. Mathar, Nov 03 2015
-
Mathematica
A007434[n_] := Sum[ MoebiusMu[n/d] * d^2, {d, Divisors[n]}]; A059376[n_] := Sum[ MoebiusMu[n/d] * d^3, {d, Divisors[n]}]; A263825[n_] := Module[{a, l, m, s1, s2, s3, s4}, a = 0; Do[m = n/l; s1 = 0; Do[If[EvenQ[twok], k = twok/2; s1 = s1 + DivisorSigma[1, k]*k], {twok, Divisors[m]}]; s2 = 0; Do[s2 = s2 + MoebiusMu[l/d]*d^2*GCD[2, d], {d, Divisors[l]}]; s3 = 0; Do[s3 = s3 + DivisorSigma[1, m/k]*k ; If[Mod[m, 2*k] == 0, s3 = s3 - DivisorSigma[1, m/2/k]*k], {k, Divisors[m]}]; s4 = 0; Do[If[EvenQ[twok], s4 = s4 + DivisorSigma[1, m/twok]*twok; If[ Mod[m, 2*twok] == 0, s4 = s4 - DivisorSigma[1, m/2/twok]*twok]], {twok, Divisors[m]}]; a = a + A059376[l]*s1 + s2*s3 + A007434[l]*s4, {l, Divisors[n]}]; a/n ]; Array[A263825, 60] (* Jean-François Alcover, Nov 21 2017, after R. J. Mathar *)
-
PARI
A001001(n) = sumdiv(n, d, sigma(d) * d); A007434(n) = sumdiv(n, d, moebius(n\d) * d^2); A059376(n) = sumdiv(n, d, moebius(n\d) * d^3); A060640(n) = sumdiv(n, d, sigma(n\d) * d); EpiPcZn(n) = sumdiv(n, d, moebius(n\d) * d^2 * gcd(d,2)); S1(n) = if (n%2, 0, A001001(n\2)); S11(n) = A060640(n) - if(n%2, 0, A060640(n\2)); S21(n) = if (n%2, 0, 2*A060640(n\2)) - if (n%4, 0, 2*A060640(n\4)); a(n) = { 1/n * sumdiv(n, d, A059376(d) * S1(n\d) + EpiPcZn(d) * S11(n\d) + A007434(d) * S21(n\d)); }; vector(60, n, a(n)) \\ Gheorghe Coserea, May 04 2016