A263828 The number c_{P c pi_1(B_1)}(n) of the first amphicosm n-coverings over the first amphicosm.
1, 4, 5, 10, 7, 20, 9, 22, 18, 28, 13, 50, 15, 36, 35, 46, 19, 72, 21, 70, 45, 52, 25, 110, 38, 60, 58, 90, 31, 140, 33, 94, 65, 76, 63, 180, 39, 84, 75, 154, 43, 180, 45, 130, 126, 100, 49, 230, 66, 152, 95, 150, 55, 232, 91, 198, 105, 124, 61
Offset: 1
Keywords
Links
- Gheorghe Coserea, Table of n, a(n) for n = 1..20000
- G. Chelnokov, M. Deryagina, A. Mednykh, On the Coverings of Amphicosms; Revised title: On the coverings of Euclidian manifolds B_1 and B_2, arXiv preprint arXiv:1502.01528 [math.AT], 2015.
Programs
-
Mathematica
a[n_] := Sum[(3/2 + 1/2 (-1)^Mod[d, 2]) DivisorSigma[1, n/d], {d, Divisors[ n]}] - If[OddQ[n], 0, Sum[(3/2 + 1/2 (-1)^Mod[d, 2]) DivisorSigma[1, n/(2 d)], {d, Divisors[n/2]}]]; Array[a, 59] (* Jean-François Alcover, Oct 10 2018, after Gheorghe Coserea *)
-
PARI
a(n) = { sumdiv(n, d, (3/2 + 1/2*(-1)^(d%2)) * sigma(n/d)) - if (n%2, 0, sumdiv(n\2, d, (3/2 + 1/2*(-1)^(d%2))*sigma(n\(2*d)))) }; vector(59, n, a(n)) \\ Gheorghe Coserea, May 04 2016
Extensions
More terms from Gheorghe Coserea, May 04 2016