cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A263843 Reversion of g.f. for A162395 (squares with signs).

Original entry on oeis.org

0, 1, 4, 23, 156, 1162, 9192, 75819, 644908, 5616182, 49826712, 448771622, 4092553752, 37714212564, 350658882768, 3285490743987, 30989950019532, 294031964658430, 2804331954047160, 26870823304476690, 258548658860327880, 2497104592420003980, 24199830095943069360, 235254163727798051070
Offset: 0

Views

Author

N. J. A. Sloane, Nov 05 2015

Keywords

Comments

This is a variant of A007297, which is the main entry, with many references to both versions.
From Peter Bala, Apr 07 2020: (Start)
Let A(x) = 1 + 4*x + 23*x^2 + ... denote the o.g.f. of this sequence taken with an offset of 0. The sequence defined by b(n) := [x^n] A(x)^n for n >= 0 begins [1, 4, 62, 1084, 19982, 379504, 7347410, 144168392, 2856907662, 57044977168, 1145905776312, 23131265652092, ...]. We conjecture that the supercongruences b(n*p^k) == b(n*p^(k-1)) ( mod p^(3*k) ) hold for prime p >= 3 and all positive integers n and k.
More generally, for a positive integer r and integer s, the sequence {b(r,s;n) : n >= 0} defined by b(r,s;n) := [x^(r*n)] A(x)^(s*n) is conjectured to satisfy the same supercongruences. (End)

Crossrefs

Cf. A162395.
A variant of A007297.

Programs

  • Maple
    with(gfun); t1:=(x-x^2)/(1+x)^3; t2:=series(t1,x,50); t3:=seriestoseries(t2, 'revogf'); seriestolist(%);
  • Mathematica
    CoefficientList[InverseSeries[Series[x*(1-x)/(1+x)^3, {x, 0, 30}], x], x] (* Vaclav Kotesovec, Nov 11 2017 *)

Formula

a(n) ~ sqrt(7 - 4*sqrt(3)) * 2^(n-1/2) * 3^(3*n/2) / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Nov 11 2017
D-finite with recurrence n*(n+1)*a(n) -18*n*(n-2)*a(n-1) +12*(-9*n^2+18*n-14)*a(n-2) +216*(3*n-7)*(3*n-8)*a(n-3)=0. - R. J. Mathar, Mar 24 2023
From Ilya Gutkovskiy, Sep 26 2023: (Start)
G.f. A(x) satisfies: A(x) = x * (1 + A(x))^3 / (1 - A(x)).
a(n) = (1/n) * Sum_{k=0..n-1} binomial(n+k-1,k) * binomial(3*n,n-k-1) for n > 0. (End)