A263843 Reversion of g.f. for A162395 (squares with signs).
0, 1, 4, 23, 156, 1162, 9192, 75819, 644908, 5616182, 49826712, 448771622, 4092553752, 37714212564, 350658882768, 3285490743987, 30989950019532, 294031964658430, 2804331954047160, 26870823304476690, 258548658860327880, 2497104592420003980, 24199830095943069360, 235254163727798051070
Offset: 0
Programs
-
Maple
with(gfun); t1:=(x-x^2)/(1+x)^3; t2:=series(t1,x,50); t3:=seriestoseries(t2, 'revogf'); seriestolist(%);
-
Mathematica
CoefficientList[InverseSeries[Series[x*(1-x)/(1+x)^3, {x, 0, 30}], x], x] (* Vaclav Kotesovec, Nov 11 2017 *)
Formula
a(n) ~ sqrt(7 - 4*sqrt(3)) * 2^(n-1/2) * 3^(3*n/2) / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Nov 11 2017
D-finite with recurrence n*(n+1)*a(n) -18*n*(n-2)*a(n-1) +12*(-9*n^2+18*n-14)*a(n-2) +216*(3*n-7)*(3*n-8)*a(n-3)=0. - R. J. Mathar, Mar 24 2023
From Ilya Gutkovskiy, Sep 26 2023: (Start)
G.f. A(x) satisfies: A(x) = x * (1 + A(x))^3 / (1 - A(x)).
a(n) = (1/n) * Sum_{k=0..n-1} binomial(n+k-1,k) * binomial(3*n,n-k-1) for n > 0. (End)
Comments