A263877 Numbers n such that n^2 + 1 has three distinct prime divisors less than n.
21, 43, 57, 72, 99, 111, 117, 119, 128, 132, 142, 172, 174, 185, 192, 193, 200, 211, 212, 216, 251, 268, 294, 305, 322, 336, 338, 342, 351, 360, 378, 394, 408, 418, 431, 443, 448, 450, 460, 485, 498, 509, 515, 524, 552, 560, 562, 568, 580, 601, 606, 612, 616
Offset: 1
Keywords
Examples
72 is in the sequence because 72^2 + 1 = 5*17*61 and 5, 17 and 61 are less than 72.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Select[Range[800], PrimeNu[#^2+1] == 3&&FactorInteger[#^2+1][[1,1]]<#&& FactorInteger[#^2+1][[2,1]]<#&&FactorInteger[#^2+1][[3,1]]<#&]
-
PARI
for(n=1, 1e3, t=n^2+1; if ((omega(t) == 3) && (factor(t)[, 1][3] < n), print1(n, ", "))); \\ Altug Alkan, Oct 28 2015
Comments