A263876 Numbers n such that n^2 + 1 has two distinct prime divisors less than n.
7, 18, 38, 41, 68, 70, 182, 239, 500, 682, 776, 800, 1068, 1710, 1744, 4030, 4060, 5604, 5744, 8119, 12156, 15006, 16610, 17684, 21490, 25294, 26884, 27590, 32060, 32150, 37416, 37520, 45630, 47321, 58724, 71264, 84906, 88526, 98864, 109054, 109610, 128766
Offset: 1
Keywords
Examples
7 is in the sequence because 7^2 + 1 = 2*5^2 => 2 and 5 are less than 7.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..500
Programs
-
Mathematica
Select[Range[150000], PrimeNu[#^2+1] == 2&&FactorInteger[#^2+1][[1,1]]<# &&FactorInteger[#^2+1][[2,1]]<#&]
-
PARI
for(n=1, 1e5, t=n^2+1; if ((omega(t) == 2) && (factor(t)[, 1][2] < n), print1(n, ", "))); \\ Altug Alkan, Oct 28 2015
Comments