cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A263918 Riordan array (f(x)^4, f(x)), where 1 + x*f^4(x)/(1 - x*f(x)) = f(x).

Original entry on oeis.org

1, 4, 1, 26, 5, 1, 192, 35, 6, 1, 1531, 270, 45, 7, 1, 12848, 2215, 362, 56, 8, 1, 111818, 18961, 3054, 461, 68, 9, 1, 1000068, 167455, 26670, 4067, 592, 81, 10, 1, 9135745, 1514590, 239081, 36232, 5274, 732, 95, 11, 1
Offset: 0

Views

Author

Peter Bala, Oct 29 2015

Keywords

Comments

Riordan arrays of the form (f(x)^(m+1), f(x)), where f(x) satisfies 1 + x*f^(m+1)(x)/(1 - x*f(x)) = f(x) include (modulo differences of offset) the Motzkin triangle A091836 (m = -1), the Catalan triangle A033184 (m = 0) and the Schroder triangle A091370 (m = 1). This is the case m = 3. See A263917 for the case m = 2.
The coefficients of the power series solution of the equation 1 + x*f^(m+1)(x)/(1 - x*f(x)) = f(x) appear to be given by [x^0] f(x) = 1 and [x^n] f(x) = 1/n * Sum_{k = 1..n} binomial(n,k)*binomial(n + m*k, k - 1) for n >= 1.
This triangle appears in Novelli et al., Figure 8, p. 24, where a combinatorial interpretation is given in terms of trees.

Examples

			Triangle begins
1,
4, 1,
26, 5, 1,
192, 35, 6, 1,
1531, 270, 45, 7, 1,
12848, 2215, 362, 56, 8, 1,
111818, 18961, 3054, 461, 68, 9, 1,
...
f(x) = 1 + x + 5*x^2 + 32*x^3 + 234*x^4 + 1854*x^5 + 15490*x^6 + 134380*x^7 + 1198944*x^8 + 10931761*x^9 + 101412677*x^10 + 954155059*x^11 + 9083120975*x^12 + ...
f(x)^4 = 1 + 4*x + 26*x^2 + 192*x^3 + 1531*x^4 + 12848*x^5 + 111818*x^6 + 1000068*x^7 + 9135745*x^8 + 84880196*x^9 + 799602464*x^10 + 7619763776*x^11 + 73322247876*x^12 + ...
		

Crossrefs

Programs

  • Maple
    TreesByArityOfTheRoot_Row := proc(m, row) local c,f,s;
    c := N -> hypergeom([1-N, seq((N+j)/m, j=m+1..2*m)],
    [2, seq((N+j)/(m-1), j=m+1..2*m-1)], -m^m/(m-1)^(m-1)):
    f := n -> 1 + add(simplify(c(i))*x^i,i=1..n):
    s := j -> coeff(series(f(j)^(m+1)/(1-x*t*f(j)),x,j+1),x,j):
    seq(coeff(s(row),t,j),j=0..row) end:
    A263918_row := n -> TreesByArityOfTheRoot_Row(3, n):
    seq(A263918_row(n), n=0..8); # Peter Luschny, Oct 31 2015
  • Mathematica
    nmax = 9; For[f = 1; n = 1, n <= nmax, n++, f = 1 + x*f^4/(1 - x*f) + O[x]^n // Normal];
    g = f^4/(1 - x*t*f) + O[x]^nmax // Normal;
    row[n_] := CoefficientList[Coefficient[g, x, n], t];
    Table[row[n], {n, 0, nmax}] // Flatten (* Jean-François Alcover, Dec 03 2017 *)

Formula

O.g.f. f^4(x)/(1 - x*t*f(x)) = 1 + (4 + t)*x + (26 + 5*t + t^2)*x^2 + ..., where f(x) = 1 + x + 5*x^2 + 32*x^3 + 234*x^4 + ... satisfies 1 + x*f^4(x)/(1 - x*f(x)) = f(x);
f(x) - 1 is the g.f. for the row sums of the array.
f(x)^4 is the g.f. for the first column of the array.