A263918 Riordan array (f(x)^4, f(x)), where 1 + x*f^4(x)/(1 - x*f(x)) = f(x).
1, 4, 1, 26, 5, 1, 192, 35, 6, 1, 1531, 270, 45, 7, 1, 12848, 2215, 362, 56, 8, 1, 111818, 18961, 3054, 461, 68, 9, 1, 1000068, 167455, 26670, 4067, 592, 81, 10, 1, 9135745, 1514590, 239081, 36232, 5274, 732, 95, 11, 1
Offset: 0
Examples
Triangle begins 1, 4, 1, 26, 5, 1, 192, 35, 6, 1, 1531, 270, 45, 7, 1, 12848, 2215, 362, 56, 8, 1, 111818, 18961, 3054, 461, 68, 9, 1, ... f(x) = 1 + x + 5*x^2 + 32*x^3 + 234*x^4 + 1854*x^5 + 15490*x^6 + 134380*x^7 + 1198944*x^8 + 10931761*x^9 + 101412677*x^10 + 954155059*x^11 + 9083120975*x^12 + ... f(x)^4 = 1 + 4*x + 26*x^2 + 192*x^3 + 1531*x^4 + 12848*x^5 + 111818*x^6 + 1000068*x^7 + 9135745*x^8 + 84880196*x^9 + 799602464*x^10 + 7619763776*x^11 + 73322247876*x^12 + ...
Links
- J.-C. Novelli and J.-Y. Thibon, Noncommutative Symmetric Functions and Lagrange Inversion, arXiv:math/0512570 [math.CO], 2005-2006.
Programs
-
Maple
TreesByArityOfTheRoot_Row := proc(m, row) local c,f,s; c := N -> hypergeom([1-N, seq((N+j)/m, j=m+1..2*m)], [2, seq((N+j)/(m-1), j=m+1..2*m-1)], -m^m/(m-1)^(m-1)): f := n -> 1 + add(simplify(c(i))*x^i,i=1..n): s := j -> coeff(series(f(j)^(m+1)/(1-x*t*f(j)),x,j+1),x,j): seq(coeff(s(row),t,j),j=0..row) end: A263918_row := n -> TreesByArityOfTheRoot_Row(3, n): seq(A263918_row(n), n=0..8); # Peter Luschny, Oct 31 2015
-
Mathematica
nmax = 9; For[f = 1; n = 1, n <= nmax, n++, f = 1 + x*f^4/(1 - x*f) + O[x]^n // Normal]; g = f^4/(1 - x*t*f) + O[x]^nmax // Normal; row[n_] := CoefficientList[Coefficient[g, x, n], t]; Table[row[n], {n, 0, nmax}] // Flatten (* Jean-François Alcover, Dec 03 2017 *)
Formula
O.g.f. f^4(x)/(1 - x*t*f(x)) = 1 + (4 + t)*x + (26 + 5*t + t^2)*x^2 + ..., where f(x) = 1 + x + 5*x^2 + 32*x^3 + 234*x^4 + ... satisfies 1 + x*f^4(x)/(1 - x*f(x)) = f(x);
f(x) - 1 is the g.f. for the row sums of the array.
f(x)^4 is the g.f. for the first column of the array.
Comments