A263922 Highest exponent in prime factorization of n-th central binomial coefficient.
1, 1, 2, 1, 2, 2, 3, 2, 2, 2, 3, 2, 3, 3, 4, 2, 3, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 2, 2, 3, 2, 3, 3, 4, 2, 4, 3, 4, 4, 4, 4, 5, 2, 3, 4, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 2, 2, 3, 4, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 4, 3, 3, 4, 3, 4, 4, 5
Offset: 1
Examples
For n=3, C(6,3) = 20 = 2^2 * 5^1 so a(3) = 2.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- MathOverflow, Divisibility of a binomial coefficient by p^2 — current status
- A. Granville and O. Ramaré, Explicit bounds on exponential sums and the scarcity of squarefree binomial coefficients, Mathematika 43 (1996), 73-107, [DOI].
Programs
-
Haskell
a263922 = a051903 . a000984 -- Reinhard Zumkeller, Nov 19 2015
-
Maple
f:= t -> max(seq(s[2],s=ifactors(t)[2])): seq(f(binomial(2*n,n)),n=1..100); # Robert Israel, Oct 29 2015
-
Mathematica
a[n_] := FactorInteger[Binomial[2 n, n]][[All, 2]] // Max; Array[a, 100] (* Jean-François Alcover, Nov 27 2015 *)
-
PARI
f(n,p)=my(d=Vecrev(digits(n,p)),c); sum(i=1,#d,c=(2*d[i]+c>=p)) a(n)=my(r=hammingweight(n),L=sqrtnint(n,r+1),t); forprime(p=3, L, t=f(n,p); if(t>r, L=sqrtnint(n,1+r=t)); if(p>=L, return(r))); r \\ Charles R Greathouse IV, Oct 29 2015
-
PARI
vector(200, n, vecmax(factor(binomial(2*n, n))[, 2])) \\ Altug Alkan, Oct 30 2015
-
Sage
max_exp = lambda n: max([p[1] for p in list(n.factor())]) print([max_exp(binomial(2*n,n)) for n in (1..87)]) # Peter Luschny, Oct 30 2015 def a(n): N = 2*n r = sum(N.digits(2)) b = 1+ZZ(N).nth_root(r, truncate_mode=1)[0] for p in primes(3, b): t, q = 0, N while True: q //= p if q == 0: break if (q & 1) == 1: t += 1 if t > r : r = t return r print([a(n) for n in (1..87)]) # Peter Luschny, Nov 02 2015
Comments