cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A263922 Highest exponent in prime factorization of n-th central binomial coefficient.

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 3, 2, 2, 2, 3, 2, 3, 3, 4, 2, 3, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 2, 2, 3, 2, 3, 3, 4, 2, 4, 3, 4, 4, 4, 4, 5, 2, 3, 4, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 2, 2, 3, 4, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 4, 3, 3, 4, 3, 4, 4, 5
Offset: 1

Views

Author

Robert Israel, Oct 29 2015

Keywords

Comments

a(n) >= 2 for n > 4.
a(n) is the maximum number of carries in base-p addition of n+n for primes p <= 2n.
A000120(n) <= a(n) <= A070939(n).
It appears that a(n) >= 3 for n > 1056. Any further n must be greater than 10^1000. Similarly it appears that a(n) >= 4 for n > 557056 and a(n) >= 5 for n > 1090519552. - Charles R Greathouse IV, Oct 31 2015

Examples

			For n=3, C(6,3) = 20 = 2^2 * 5^1 so a(3) = 2.
		

Crossrefs

Programs

  • Haskell
    a263922 = a051903 . a000984  -- Reinhard Zumkeller, Nov 19 2015
  • Maple
    f:= t -> max(seq(s[2],s=ifactors(t)[2])):
    seq(f(binomial(2*n,n)),n=1..100); # Robert Israel, Oct 29 2015
  • Mathematica
    a[n_] := FactorInteger[Binomial[2 n, n]][[All, 2]] // Max; Array[a, 100] (* Jean-François Alcover, Nov 27 2015 *)
  • PARI
    f(n,p)=my(d=Vecrev(digits(n,p)),c); sum(i=1,#d,c=(2*d[i]+c>=p))
    a(n)=my(r=hammingweight(n),L=sqrtnint(n,r+1),t); forprime(p=3, L, t=f(n,p); if(t>r, L=sqrtnint(n,1+r=t)); if(p>=L, return(r))); r \\ Charles R Greathouse IV, Oct 29 2015
    
  • PARI
    vector(200, n, vecmax(factor(binomial(2*n, n))[, 2])) \\ Altug Alkan, Oct 30 2015
    
  • Sage
    max_exp = lambda n: max([p[1] for p in list(n.factor())])
    print([max_exp(binomial(2*n,n)) for n in (1..87)]) # Peter Luschny, Oct 30 2015
    def a(n):
        N = 2*n
        r = sum(N.digits(2))
        b = 1+ZZ(N).nth_root(r, truncate_mode=1)[0]
        for p in primes(3, b):
            t, q = 0, N
            while True:
                q //= p
                if q == 0: break
                if (q & 1) == 1: t += 1
            if t > r : r = t
        return r
    print([a(n) for n in (1..87)]) # Peter Luschny, Nov 02 2015
    

Formula

a(n) = A051903(A000984(n)).