cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A263931 a(n) = binomial(2*n, n) / Product(p prime | n < p <= 2*n).

Original entry on oeis.org

1, 1, 2, 4, 2, 36, 12, 24, 90, 20, 4, 168, 28, 1400, 5400, 720, 90, 5940, 23100, 46200, 180180, 17160, 1560, 140400, 11700, 45864, 179928, 13328, 52360, 5969040, 397936, 795872, 3133746, 12345060, 726180, 2863224, 159068, 318136, 1255800, 4958800, 247940
Offset: 0

Views

Author

Peter Luschny, Oct 31 2015

Keywords

Comments

The highest exponent in the prime factorization of a(n) is A263922(n), n>=2.
a(n) is even for n>=2.
By the Erdős squarefree conjecture, proved in 1996, no a(n) with n >= 5 is squarefree. - Robert FERREOL, Sep 06 2022
Conjecture: n=5 is the only n for which a(n)^2 > binomial(2*n,n). - Richard Peterson, Dec 18 2024

Crossrefs

Programs

  • Maple
    a := n -> binomial(2*n,n)/convert(select(isprime, {$n+1..2*n}),`*`):
    seq(a(n), n=0..40);
  • PARI
    a(n) = { my(res = 1); forprime(p = 2, n, res*= p^(val(2*n, p) - 2*val(n, p))); forprime(p = n + 1, 2*n, res*= p^(val(2*n, p) - 2*val(n, p) - 1)); res }
    val(n, p) = my(r=0); while(n, r+=n\=p);r \\ David A. Corneth, Apr 03 2021
    
  • Python
    from math import comb
    from sympy import primorial
    def A263931(n): return comb(m:=n<<1,n)*primorial(n,nth=False)//primorial(m,nth=False) if n else 1 # Chai Wah Wu, Sep 07 2022

Formula

a(n) = A000984(n)/A261130(n).

A263924 Numbers n such that there is a prime p > 3 and an exponent e such that the central binomial coefficient binomial(2n, n) is divisible by p^e but not by either 2^e or 3^e.

Original entry on oeis.org

64, 256, 272, 324, 513, 514, 516, 544, 1026, 1028, 1032, 1064, 1088, 1089, 1216, 1544, 1552, 1568, 1569, 2052, 2056, 2064, 2188, 2192, 2193, 2194, 2208, 2224, 2244, 2248, 2304, 2313, 2314
Offset: 1

Views

Author

Keywords

Comments

How quickly does this sequence grow asymptotically?
A263922(a(n)) > max{A000120(a(n)),A000989(an(n))}. - Reinhard Zumkeller, Nov 19 2015

Examples

			64 is a member because binomial(128,64) = 2 * 3 * 5^3 * ..., where the exponent 3 of 5 is greater than the exponents 1 and 1 of 2 and 3, respectively.
		

Crossrefs

Programs

  • Haskell
    import Math.NumberTheory.Primes.Factorisation (factorise)
    a263924 n = a263924_list !! (n-1)
    a263924_list = filter f [2..] where
       f x = not (null pe23s) && any ((> e23) . snd) pes' where
             e23 = maximum (map snd pe23s)
             (pe23s, pes') = span ((<= 3) . fst) $ factorise $ a000984 x
    -- Reinhard Zumkeller, Nov 01 2015
  • PARI
    f(n,p)=my(d=Vecrev(digits(n,p)),c);sum(i=1,#d,c=(2*d[i]+c>=p))
    is(n)=my(r=max(hammingweight(n),f(n,3))); forprime(p=5,sqrtnint(n,r+1), if(f(n,p)>r, return(p))); 0
    

Formula

a(n) >> n^1.014. (This is surely not optimal.) - Charles R Greathouse IV, Jan 18 2016

A261129 Highest exponent in prime factorization of the swinging factorial (A056040).

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 2, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 3, 3, 3, 3, 4, 4, 2, 3, 3, 3, 2, 2, 3, 3, 2, 2, 3, 3, 3, 3, 4, 4, 2, 2, 3, 3, 3, 3, 4, 4, 3, 3, 4, 4, 4, 4, 5, 5, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 3, 3, 3, 3, 4, 4, 2, 4, 4, 4, 3, 3, 4, 4, 4
Offset: 2

Views

Author

Peter Luschny, Oct 31 2015

Keywords

Comments

A263922 is a subsequence.

Crossrefs

Programs

  • Maple
    swing := n -> n!/iquo(n,2)!^2:
    max_exp := n -> max(seq(s[2], s=ifactors(n)[2])):
    seq(max_exp(swing(n)), n=2..88);
  • Mathematica
    a[n_] := Max[FactorInteger[n!/Quotient[n, 2]!^2][[;; , 2]]]; Array[a, 100, 2] (* Amiram Eldar, Jul 29 2023 *)
  • Sage
    swing = lambda n: factorial(n)//factorial(n//2)^2
    max_exp = lambda n: max(e for p, e in n.factor())
    [max_exp(swing(n)) for n in (2..88)]

Formula

a(n) = A051903(A056040(n)) for n>=2.
A000120(floor(n/2)) <= a(n) <= A000523(n), (n>=2).

A361077 a(n) = largest sqrt(2*n)-smooth divisor of binomial(2*n, n).

Original entry on oeis.org

1, 1, 2, 4, 2, 36, 12, 24, 18, 4, 4, 24, 4, 200, 5400, 720, 90, 540, 300, 600, 180, 120, 120, 10800, 900, 3528, 10584, 784, 280, 1680, 112, 224, 882, 2940, 2940, 504, 28, 56, 4200, 19600, 980, 158760, 7560, 75600, 113400, 5040, 35280, 211680, 44100, 1800, 648, 432, 216, 45360, 1680
Offset: 0

Views

Author

Matthieu Pluntz, Mar 01 2023

Keywords

Comments

The highest exponent in the prime factorization of a(n) is A263922(n), for n >= 2.
a(n) is even for n >= 2.
Binomial(2*n, n)/a(n) and A263931(n)/a(n) are coprime with a(n) and squarefree. By the Erdős squarefree conjecture, proved in 1996, no a(n) with n >= 5 is squarefree.

Examples

			binomial(10, 5) = 2^2*3^2*7. 2,3 <= sqrt(10), 7 > sqrt(10) so a(5) = 2^2*3^2 = 36.
		

Crossrefs

Programs

  • PARI
    a(n) = my(m=sqrtint(2*n), f=factor(binomial(2*n, n), m+1)); for (k=1, #f~, if (f[k,1]>m, f[k,1]=1)); factorback(f); \\ Michel Marcus, Mar 03 2023
  • R
    library(primes)
    n = 2*10^4
    pp = generate_primes(max = sqrt(n))
    npinb = list()
    for(p in pp){
      np = rep(0,n)
      for(t in 1:(log(n)/log(p))) np[p*(1:(n/p))] = np[1:(n/p)] + 1 #multiplicities of prime factor p in the integers
      npinb[[as.character(p)]] = cumsum(np)[2*(1:(n/2))] - 2*cumsum(np[1:(n/2)]) #multiplicities of prime factor p in the central binomial coefficients
    }
    res = rep(1,n/2)
    for(p in pp){
      select = p^2 <= 2*(1:(n/2))
      res[select] = res[select]*p^npinb[[as.character(p)]][select]
    }
    #offset of res is 1
    

Formula

a(n) = binomial(2*n, n) / Product(p prime | p^2 > 2*n, floor(2*n/p) is odd).
Showing 1-4 of 4 results.