A263928 Integers m such that sigma(m)^2 is divisible by m.
1, 6, 24, 28, 120, 224, 234, 270, 496, 588, 600, 672, 864, 1080, 1521, 1638, 1782, 2016, 3724, 4320, 4680, 5733, 6048, 6200, 6552, 7128, 8128, 11172, 11466, 15872, 17280, 18144, 18600, 18620, 21600, 22932, 26208, 26460, 27000, 30240, 32640, 32760, 33516, 35640
Offset: 1
Keywords
Examples
Divisors of 24 are 1, 2, 3, 4, 6, 8, 12, 24. Their sum is sigma(24) = 60 while the sum of their reciprocals is 1/1 + 1/2 + 1/3 + 1/4 + 1/6 + 1/8 + 1/12 + 1/24 = 5/2. Finally 60 * 5/2 = 150.
Links
- Paolo P. Lava, Table of n, a(n) for n = 1..100
Programs
-
Maple
with(numtheory): P:=proc(q) local n; for n from 1 to q do if type(sigma(n)^2/n,integer) then print(n); fi; od; end: P(10^6);
-
Mathematica
Select[Range[36000],Divisible[DivisorSigma[1,#]^2,#]&] (* Harvey P. Dale, Jul 05 2023 *)
-
PARI
isok(n) = (sigma(n)^2 % n) == 0; \\ Michel Marcus, Nov 03 2015
Extensions
New name from Michel Marcus, Nov 03 2015
Comments