A263931 a(n) = binomial(2*n, n) / Product(p prime | n < p <= 2*n).
1, 1, 2, 4, 2, 36, 12, 24, 90, 20, 4, 168, 28, 1400, 5400, 720, 90, 5940, 23100, 46200, 180180, 17160, 1560, 140400, 11700, 45864, 179928, 13328, 52360, 5969040, 397936, 795872, 3133746, 12345060, 726180, 2863224, 159068, 318136, 1255800, 4958800, 247940
Offset: 0
Keywords
Links
- David A. Corneth, Table of n, a(n) for n = 0..5806 (terms < 10^1000)
- Eric Weisstein's World of Mathematics, Erdős Squarefree Conjecture.
Programs
-
Maple
a := n -> binomial(2*n,n)/convert(select(isprime, {$n+1..2*n}),`*`): seq(a(n), n=0..40);
-
PARI
a(n) = { my(res = 1); forprime(p = 2, n, res*= p^(val(2*n, p) - 2*val(n, p))); forprime(p = n + 1, 2*n, res*= p^(val(2*n, p) - 2*val(n, p) - 1)); res } val(n, p) = my(r=0); while(n, r+=n\=p);r \\ David A. Corneth, Apr 03 2021
-
Python
from math import comb from sympy import primorial def A263931(n): return comb(m:=n<<1,n)*primorial(n,nth=False)//primorial(m,nth=False) if n else 1 # Chai Wah Wu, Sep 07 2022
Comments