cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A263931 a(n) = binomial(2*n, n) / Product(p prime | n < p <= 2*n).

Original entry on oeis.org

1, 1, 2, 4, 2, 36, 12, 24, 90, 20, 4, 168, 28, 1400, 5400, 720, 90, 5940, 23100, 46200, 180180, 17160, 1560, 140400, 11700, 45864, 179928, 13328, 52360, 5969040, 397936, 795872, 3133746, 12345060, 726180, 2863224, 159068, 318136, 1255800, 4958800, 247940
Offset: 0

Views

Author

Peter Luschny, Oct 31 2015

Keywords

Comments

The highest exponent in the prime factorization of a(n) is A263922(n), n>=2.
a(n) is even for n>=2.
By the Erdős squarefree conjecture, proved in 1996, no a(n) with n >= 5 is squarefree. - Robert FERREOL, Sep 06 2022
Conjecture: n=5 is the only n for which a(n)^2 > binomial(2*n,n). - Richard Peterson, Dec 18 2024

Crossrefs

Programs

  • Maple
    a := n -> binomial(2*n,n)/convert(select(isprime, {$n+1..2*n}),`*`):
    seq(a(n), n=0..40);
  • PARI
    a(n) = { my(res = 1); forprime(p = 2, n, res*= p^(val(2*n, p) - 2*val(n, p))); forprime(p = n + 1, 2*n, res*= p^(val(2*n, p) - 2*val(n, p) - 1)); res }
    val(n, p) = my(r=0); while(n, r+=n\=p);r \\ David A. Corneth, Apr 03 2021
    
  • Python
    from math import comb
    from sympy import primorial
    def A263931(n): return comb(m:=n<<1,n)*primorial(n,nth=False)//primorial(m,nth=False) if n else 1 # Chai Wah Wu, Sep 07 2022

Formula

a(n) = A000984(n)/A261130(n).