A263943 Positive integers n such that (n+21)^3 - n^3 is a square.
7, 119, 4564, 32900, 1161895, 8359127, 295119412, 2123188004, 74959171399, 539281396535, 19039334418580, 136975351534532, 4835915983150567, 34791200008377239, 1228303620385828084, 8836827826776286820, 311984283662017185415, 2244519476801168477687
Offset: 1
Examples
7 is in the sequence because (7+21)^3 - 7^3 = 147^2.
Links
- Colin Barker, Table of n, a(n) for n = 1..831
- Index entries for linear recurrences with constant coefficients, signature (1,254,-254,-1,1).
Crossrefs
Programs
-
Mathematica
LinearRecurrence[{1,254,-254,-1,1},{7,119,4564,32900,1161895},20] (* Harvey P. Dale, Jan 11 2017 *)
-
PARI
Vec(7*x*(4*x^4+16*x^3-381*x^2-16*x-1)/((x-1)*(x^2-16*x+1)*(x^2+16*x+1)) + O(x^30))
Formula
a(n) = a(n-1)+254*a(n-2)-254*a(n-3)-a(n-4)+a(n-5) for n>5.
G.f.: 7*x*(4*x^4+16*x^3-381*x^2-16*x-1) / ((x-1)*(x^2-16*x+1)*(x^2+16*x+1)).