cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A263985 Triangle of signed Eulerian numbers on involutions, read by rows.

Original entry on oeis.org

1, -1, 1, -1, -2, 1, 1, -2, -2, 1, 1, 6, 0, -2, 1, -1, 3, 14, 2, -3, 1, -1, -12, -15, 12, -1, -4, 1, 1, -4, -51, -76, 4, -3, -4, 1, 1, 20, 67, -10, -80, 30, 3, -4, 1, -1, 5, 137, 517, 414, 66, 75, 7, -5, 1, -1, -30, -192, -140, 721, 588, -49, 44, 0, -6, 1
Offset: 1

Views

Author

Michel Marcus, Oct 31 2015

Keywords

Examples

			Triangle begins:
1;
-1, 1;
-1, -2, 1;
1, -2, -2, 1;
1, 6, 0, -2, 1;
-1, 3, 14, 2, -3, 1;
-1, -12, -15, 12, -1, -4, 1;
...
		

Crossrefs

Cf. A049061.

Programs

  • Mathematica
    T[n_, k_] := Sum[(-1)^(k-m+1) Binomial[n+1, k-m+1] Sum[(-1)^j Binomial[ Binomial[m+1, 2]+j-1, j] Binomial[m, n-2j], {j, 0, n/2}], {m, 0, k+1}];
    Table[T[n, k], {n, 1, 11}, {k, 0, n-1}] // Flatten (* Jean-François Alcover, Sep 26 2018 *)
  • PARI
    T(n, k) = sum(m=0, k+1, (-1)^(k-m+1)*binomial(n+1,k-m+1)*sum(j=0,n\2, (-1)^j*binomial(binomial(m+1,2)+j-1,j)*binomial(m,n-2*j)));

Formula

T(n, k) = Sum_{m=0..k+1} (-1)^(k-m+1)*C(n+1,k-m+1)*Sum_{j=0..floor(n/2)} (-1)^j*C(C(m+1,2)+j-1,j)*C(m,n-2*j);