cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A264012 Composite numbers n such that gcd(phi(n), n-1) = lambda(n), where lambda(n) = A002322(n).

Original entry on oeis.org

561, 1105, 2821, 6601, 10585, 29341, 52633, 62745, 63973, 101101, 115921, 126217, 188461, 252601, 278545, 294409, 410041, 512461, 552721, 748657, 825265, 1152271, 1193221, 2100901, 2508013, 2531845, 3146221, 4335241, 4767841, 4909177, 5444489, 5481451, 6049681
Offset: 1

Views

Author

Thomas Ordowski, Nov 01 2015

Keywords

Comments

Carmichael numbers n such that A049559(n) = A002322(n).
If n is a Carmichael number with n-1 squarefree, then n is in the sequence. The smallest such n = 139952671.
If (n-1)/lambda(n) is a prime (see A174590), then n is in the sequence. - Thomas Ordowski, Oct 17 2016
Numbers n such that gcd(phi(n),n-1) = lambda(n)^2 are 1, 2, 2320690177, ? - Thomas Ordowski and Michel Marcus, Oct 20 2016

Crossrefs

Programs

  • Mathematica
    Select[ Range@ 6100000, CompositeQ@# && GCD[ EulerPhi@#, # - 1] == CarmichaelLambda@# &] (* Michael De Vlieger, Nov 01 2015 *)
  • PARI
    forcomposite(n=1, 1e7, if(gcd(eulerphi(n),n-1)==lcm(znstar(n)[2]), print1(n ", "))) \\ Altug Alkan, Nov 01 2015
    
  • PARI
    t(n)=my(f=factor(n)); for(i=1, #f[, 1], if(f[i, 2]>1||(n-1)%(f[i, 1]-1), return(0))); 1;
    is(n)=n%2 && !isprime(n) && t(n) && n>1;
    c(n)=gcd(eulerphi(n),n-1)/lcm(znstar(n)[2]);
    for(n=1, 1e7, if(is(n) && c(n)==1 , print1(n", "))) \\ Altug Alkan, Nov 01 2015

Extensions

More terms from Altug Alkan, Nov 01 2015