cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A264024 a(n) = gcd(phi(k), k-1) / lambda(k), where k is n-th Carmichael number A002997(n) and lambda(k) = A002322(k).

Original entry on oeis.org

1, 1, 12, 2, 1, 1, 9, 1, 4, 1, 6, 18, 1, 1, 1, 2, 1, 1, 1, 2, 12, 1, 1, 1, 1, 3, 3, 3, 50, 1, 18, 2, 1, 2, 1, 2, 5, 36, 1, 1, 2, 3, 4, 3, 3, 2, 3, 1, 1, 3, 3, 2, 4, 2, 5, 1, 4, 4, 4, 1, 1, 3, 40, 28, 1, 2, 4, 2, 4, 1, 2, 1, 2, 1, 33, 5, 50, 64, 1, 1, 3, 2, 1, 1, 12, 3, 1, 12, 1, 1, 1, 24, 1, 3, 128, 1, 6, 8, 5, 20, 3, 2, 2, 6, 4
Offset: 1

Views

Author

Thomas Ordowski, Nov 01 2015

Keywords

Crossrefs

Programs

  • Mathematica
    t = Cases[Range[1, 16 (10^6), 2], n_ /; Mod[n, CarmichaelLambda@ n] == 1 && ! PrimeQ@ n]; Table[GCD[EulerPhi@ t[[n]], t[[n]] - 1]/CarmichaelLambda@ t[[n]], {n, 105}] (* Michael De Vlieger, Nov 03 2015, after Artur Jasinski at A002997: alternatively use A002997 data for t *)
  • PARI
    t(n)=my(f=factor(n)); for(i=1, #f[, 1], if(f[i, 2]>1||(n-1)%(f[i, 1]-1), return(0))); 1;
    is(n)=n%2 && !isprime(n) && t(n) && n>1;
    c(n)=gcd(eulerphi(n),n-1)/lcm(znstar(n)[2]);
    for(n=1, 1e7, if(is(n), print1(c(n)", "))) \\ Altug Alkan, Nov 01 2015

Formula

a(n) = A049559(k)/A002322(k), where k = A002997(n).

Extensions

More terms from Altug Alkan, Nov 01 2015