cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A264036 Stirling transform of A077957 (aerated powers of 2).

Original entry on oeis.org

1, 0, 2, 6, 18, 70, 330, 1694, 9202, 53334, 332090, 2212782, 15638370, 116365990, 907975146, 7413080510, 63212284498, 561747543414, 5190343710746, 49752410984526, 493844719701186, 5068209425457862, 53705511911500746, 586862875255860062, 6605213319604075186
Offset: 0

Views

Author

Vladimir Reshetnikov, Nov 01 2015

Keywords

Comments

a(n) is the inverse binomial transform of A264037 without the leading zero [1, 1, 3, 13, 55, ...].

Examples

			G.f. = 1 + 2*x^2 + 6*x^3 + 18*x^4 + 70*x^5 + 330*x^6 + 1694*x^7 + 9202*x^8 + ...
		

Crossrefs

Column k=2 of A357681.

Programs

  • Mathematica
    Table[(BellB[n, Sqrt[2]] + BellB[n, -Sqrt[2]])/2, {n, 0, 24}]
  • PARI
    vector(100, n, n--; sum(k=0, n\2, 2^k*stirling(n, 2*k, 2))) \\ Altug Alkan, Nov 01 2015

Formula

a(n) = Sum_{k=0..n} A077957(k)*Stirling2(n,k).
a(n) = Sum_{k=0..floor(n/2)} 2^k*Stirling2(n,2*k).
a(n) = (Bell_n(sqrt(2)) + Bell_n(-sqrt(2)))/2, where Bell_n(x) is n-th Bell polynomial.
Bell_n(sqrt(2)) = a(n) + A264037(n)*sqrt(2).
E.g.f.: cosh(sqrt(2)*(exp(x) - 1)).
a(n) = 1; a(n) = 2 * Sum_{k=0..n-1} binomial(n-1, k) * A264037(k). - Seiichi Manyama, Oct 12 2022