A264038 Convolution of Lucas and Jacobsthal numbers.
0, 2, 3, 10, 20, 47, 98, 210, 435, 902, 1848, 3775, 7670, 15542, 31403, 63330, 127500, 256367, 514938, 1033450, 2072675, 4154702, 8324528, 16673535, 33386670, 66837422, 133778523, 267724810, 535721060, 1071881327, 2144473298, 4290096450, 8582053395, 17167117142, 34339105128, 68686091455, 137384934950, 274790503142, 549614391563, 1099282801650
Offset: 0
Examples
Let L(n)=A000032(n), j(n)=A014551(n), and J(n)=A001045(n). Then using the convolution definition (I), a(3)=10 because a(3) = L(0)J(3) + L(1)J(2) + L(2)J(1) + L(3)J(0) = 2*3 + 1*1 + 3*1 + 4*0 = 10; similarly, using definition (II) we have a(3) = j(4) - L(4) = 17 - 7 = 10.
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Martin Griffiths and Alex Bramham, The Jacobsthal Numbers: Two Results and Two Questions, Fibonacci Quarterly, Vol. 53, No. 2, May 2015, pp. 147-151.
- Tamás Szakács, Convolution of second order linear recursive sequences I., Annales Mathematicae et Informaticae 46 (2016) pp. 205-216.
- Index entries for linear recurrences with constant coefficients, signature (2,2,-3,-2).
Crossrefs
Programs
-
Mathematica
LinearRecurrence[{1,2},{1,5},40]-LinearRecurrence[{1,1},{1,3},40] LinearRecurrence[{2,2,-3,-2},{0,2,3,10},50] (* Harvey P. Dale, Dec 11 2016 *)
-
PARI
/* Prints first 40 terms of sequence a(n) */ Lucas(n)={if(n==0,2,if(n==1,1,Lucas(n-1)+Lucas(n-2)));} j(n)={if(n==0,2,if(n==1,1,j(n-1)+2*j(n-2)));} /*Lucas-Jacobsthal*/ a(n)=j(n+1)-Lucas(n+1); for(n=0,40,print(a(n)));
-
PARI
concat(0, Vec(-x*(x-2)/((x+1)*(2*x-1)*(x^2+x-1)) + O(x^100))) \\ Colin Barker, Nov 02 2015
Formula
G.f.: 2/(1-2x)-1/(1+x)-alpha/(1-alpha*x)-beta/(1-beta*x) with alpha=(1+sqrt(5))/2 and beta=-1/alpha.
From Colin Barker, Nov 02 2015: (Start)
a(n) = 2*a(n-1)+2*a(n-2)-3*a(n-3)-2*a(n-4) for n > 3.
G.f.: 2/(1-2x)-1/(1+x)-alpha/(1-alpha*x)-beta/(1-beta*x)=-x*(x-2) / ((x+1)*(2*x-1)*(x^2+x-1)), with alpha = (sqrt(5)+1)/2, and beta=-1/alpha.(End)
Comments