A264051 Triangle read by rows: T(n,k) (n>=0, 0<=k<=A264078(n)) is the number of integer partitions of n having k standard Young tableaux such that no entries i and i+1 appear in the same row.
0, 1, 0, 1, 1, 1, 1, 2, 2, 2, 1, 2, 3, 0, 2, 4, 2, 1, 1, 1, 1, 1, 4, 3, 1, 0, 0, 2, 2, 0, 1, 0, 1, 0, 0, 0, 1, 7, 2, 0, 0, 1, 0, 3, 0, 1, 0, 2, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 7, 3, 1, 2, 0, 0, 1, 2, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1
Offset: 0
Examples
Triangle begins: 0,1, 0,1, 1,1, 1,2, 2,2,1, 2,3,0,2, 4,2,1,1,1,1,1, 4,3,1,0,0,2,2,0,1,0,1,0,0,0,1, 7,2,0,0,1,0,3,0,1,0,2,1,0,0,0,1,1,0,1,0,0,0,0,0,0,0,0,0,1,0,1, ...
Links
- Alois P. Heinz, Rows n = 0..14, flattened
- S. Dulucq and O. Guibert, Stack words, standard tableaux and Baxter permutations, Disc. Math. 157 (1996), 91-106.
- FindStat - Combinatorial Statistic Finder, Number of standard Young tableaux of an integer partition such that no k and k+1 appear in the same row.
Programs
-
Maple
h:= proc(l, j) option remember; `if`(l=[], 1, `if`(l[1]=0, h(subsop(1=[][], l), j-1), add( `if`(i<>j and l[i]>0 and (i=1 or l[i]>l[i-1]), h(subsop(i=l[i]-1, l), i), 0), i=1..nops(l)))) end: g:= proc(n, i, l) `if`(n=0 or i=1, x^h([1$n, l[]], 0), `if`(i<1, 0, g(n, i-1, l)+ `if`(i>n, 0, g(n-i, i, [i, l[]])))) end: T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(g(n$2, [])): seq(T(n), n=0..10); # Alois P. Heinz, Nov 02 2015
-
Mathematica
h[l_, j_] := h[l, j] = If[l == {}, 1, If[l[[1]] == 0, h[ReplacePart[l, 1 -> Sequence[]], j - 1], Sum[If[i != j && l[[i]] > 0 && (i == 1 || l[[i]] > l[[i - 1]]), h[ReplacePart[l, i -> l[[i]] - 1], i], 0], {i, 1, Length[l]} ]]]; g[n_, i_, l_] := If[n == 0 || i == 1, x^h[Join[Array[1 &, n], l], 0], If[i < 1, 0, g[n, i - 1, l] + If[i > n, 0, g[n - i, i, Join[{i}, l]]] ]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][g[n, n, {}]]; Table[T[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Jan 22 2016, after Alois P. Heinz *)
Comments