A298855 Squarefree semiprimes p*q for which the symmetric representation of sigma(p*q) has four parts, in increasing order.
21, 33, 39, 51, 55, 57, 65, 69, 85, 87, 93, 95, 111, 115, 119, 123, 129, 133, 141, 145, 155, 159, 161, 177, 183, 185, 201, 203, 205, 213, 215, 217, 219, 235, 237, 249, 253, 259, 265, 267, 287, 291, 295, 301, 303, 305, 309, 319, 321, 327, 329, 335, 339, 341, 355, 365, 371, 377, 381, 393, 395
Offset: 1
Examples
21=3*7 is the smallest number in the sequence since 2*3<7. 1081=23*(2*23+1) is in the sequence; its central parts meet at 751 on the diagonal. The semiprimes p*q can be arranged as an irregular triangle with rows and columns labeled by the respective odd primes: q\p| 3 5 7 11 13 17 19 23 ---+--------------------------------------- 7 | 21 11 | 33 55 13 | 39 65 17 | 51 85 119 19 | 57 95 133 23 | 69 115 161 253 29 | 87 145 203 319 377 31 | 93 155 217 341 403 37 | 111 185 259 407 481 629 41 | 123 205 287 451 533 697 779 43 | 129 215 301 473 559 731 817 47 | 141 235 329 517 611 799 893 1081
Crossrefs
Programs
-
Mathematica
(* Function a237270[] is defined in A237270 *) a006881Q[n_] := Module[{f=FactorInteger[n]}, Length[f]==2 && AllTrue[Last[Transpose[f]], #==1&]] a298855[m_, n_] := Select[Range[m, n], a006881Q[#] && Length[a237270[#]]==4 &] a298855[1, 400] (* data *) (* column for prime p through number n *) stalk[n_, p_] := Select[a298855[1, n], First[First[FactorInteger[#]]]==p&]
Comments