cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A264228 G.f. A(x) satisfies: A(x)^3 = A( x^3/(1-3*x) ), with A(0) = 0.

Original entry on oeis.org

1, 1, 2, 5, 13, 35, 97, 274, 785, 2275, 6656, 19630, 58295, 174175, 523238, 1579584, 4789919, 14584723, 44577799, 136732988, 420784888, 1298937282, 4021383654, 12483820395, 38853994422, 121220646116, 379062880051, 1187912517953, 3730305167438, 11736596024002, 36994041916973, 116807229667919, 369415244627269, 1170113816365089
Offset: 1

Views

Author

Paul D. Hanna, Nov 08 2015

Keywords

Comments

Radius of convergence is r = (sqrt(13) - 3)/2, where r = r^3/(1-3*r), with A(r) = 1.
Compare to a g.f. M(x) of Motzkin numbers: M(x)^2 = M(x^2/(1-2*x)) where M(x) = (1-x - sqrt(1-2*x-3*x^2))/(2*x).

Examples

			G.f.: A(x) = x + x^2 + 2*x^3 + 5*x^4 + 13*x^5 + 35*x^6 + 97*x^7 + 274*x^8 + 785*x^9 + 2275*x^10 + 6656*x^11 + 19630*x^12 + 58295*x^13 + 174175*x^14 + ...
where A(x)^3 = A( x^3/(1-3*x) ).
RELATED SERIES.
A(x)^3 = x^3 + 3*x^4 + 9*x^5 + 28*x^6 + 87*x^7 + 270*x^8 + 839*x^9 + 2610*x^10 + 8127*x^11 + 25331*x^12 + 79035*x^13 + 246852*x^14 + 771808*x^15 + ...
A( x/(1+x+x^2) ) = x + x^4 + 2*x^7 + 6*x^10 + 22*x^13 + 88*x^16 + 367*x^19 + 1570*x^22 + 6843*x^25 + 30271*x^28 + 135530*x^31 + 612852*x^34 + 2794412*x^37 + 12832472*x^40 + ...
Let B(x) = x/Series_Reversion(A(x)), then A(x) = x*B(A(x)), where
B(x) = 1 + x + x^2 + x^3 - x^5 - x^6 + 2*x^8 + 3*x^9 - 6*x^11 - 9*x^12 + 20*x^14 + 30*x^15 - 71*x^17 - 110*x^18 + 267*x^20 + 419*x^21 - 1041*x^23 + ...
Let C0(x) and C2(x) be series trisections of B(x), B(x) = C0(x) + x + C2(x):
C0(x) = 1 + x^3 - x^6 + 3*x^9 - 9*x^12 + 30*x^15 - 110*x^18 + 419*x^21 - 1648*x^24 + 6652*x^27 - 27369*x^30 + 114384*x^33 - 484276*x^36 + ...
C2(x) = x^2 - x^5 + 2*x^8 - 6*x^11 + 20*x^14 - 71*x^17 + 267*x^20 - 1041*x^23 + 4168*x^26 - 17047*x^29 + 70902*x^32 + ... + (-1)^(n-1)*A370446(n)*x^(3*n-1) + ...
then C0(x) = x^2/C2(x).
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=x); for(i=1, n, A = ( subst(A, x, x^3/(1-3*x +x*O(x^n))) )^(1/3) ); polcoeff(A, n)}
    for(n=1, 40, print1(a(n), ", "))

Formula

G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following.
(1) A(x)^3 = A( x^3/(1-3*x) ).
(2) A( x/(1+3*x) )^3 = A( x^3/(1+3*x)^2 ). - Paul D. Hanna, Mar 25 2023
(3) A( x/(1+x+x^2) )^3 = A( x^3/(1-x^3)^2 ). - Paul D. Hanna, Mar 11 2024